《专题24 以几何体为载体的应用题(原卷版).docx》由会员分享,可在线阅读,更多相关《专题24 以几何体为载体的应用题(原卷版).docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24 以几何体为载体的应用题在江苏高考的试题中,应用题是每年必考的题型,应用题主要体现了学生运用数学知识解决实际问题的能力。近几年来应用题以几何背景呈现的居多,特别是一些几何体如直棱柱、圆锥、圆柱、球等简单的几何体的面积或体积有关。因此,在复习中要特别重视以几何题为背景的函数应用题。解决此类问题的关键明确各个量之间的关系,运用立体几何的知识点求出各种量,然后表示出面积、体积建立目标函数。一、 例题选讲题型一、多面体有关的应用题例1、(2019苏州三市、苏北四市二调)一栋新农村别墅,它由上部屋顶和下部主体两部分组成如图,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,
2、左右两坡屋面EAD和FBC是全等的三角形点F在平面ABCD和BC上的射影分别为H,M.已知HM5 m,BC10 m,梯形ABFE的面积是FBC面积的2.2倍设FMH.(1) 求屋顶面积S关于的函数关系式;(2) 已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?题型二、与球、圆有关的应用题例2、(2018苏北四市期末)某艺术品公司欲生产一款迎新春工艺礼品,该礼品由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1,为了便于设计,可将该礼品看成是由圆O及其内接
3、等腰三角形ABC绕底边BC上的高所在直线AO旋转180而成,如图2,已知圆O的半径为10 cm,设BAO,0,圆锥的侧面积为S cm2.(1) 求S关于的函数关系式;(2) 为了达到最佳观赏效果,要求圆锥的侧面积S最大,求S取得最大值时腰AB的长度(图1)(图2) 例3、(2019秋闵行区校级月考)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为圆弧的中点)和线段MN构成,已知圆O的半径为40米,点P到MN的距离为50米,现规范在此农田修建两个温室大棚,大棚内的地块形状为梯形MNBA,其中ABMN,且ABMN,大棚内的地块形状为ABP,要求A、B均在圆弧上,设OB与MN所成的角
4、为(1)用表示多边形MAPBN的面积,并确定sin的取值范围;(2)若分别在两个大棚内种植两种不同的蔬菜,且这两种蔬菜单位面积的年产值相等,求当为何值时,能使种植蔬菜的收益最大题型三、与柱和锥有关的应用题例4、如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径已知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y百元(1)设SDO1(rad),将y表示成的函数关系式;(2)求制作该存储设备总费用的最小值题型四、复杂几何体有关的应用题例5、(2
5、017苏州预测卷)如图1所示为一种魔豆吊灯,图2为该吊灯的框架结构图,由正六棱锥和构成,两个棱锥的侧棱长均相等,且棱锥底面外接圆的直径为,底面中心为,通过连接线及吸盘固定在天花板上,使棱锥的底面呈水平状态,下顶点与天花板的距离为,所有的连接线都用特殊的金属条制成,设金属条的总长为y(1)设O1AO =(rad),将y表示成的函数关系式,并写出的范围;(2)请你设计,当角正弦值的大小是多少时,金属条总长y最小二、 达标训练1、(2017南京、盐城二模)在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成
6、一个无盖的长方体纸盒(如图)设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中ab.(1) 当a90时,求纸盒侧面积的最大值;(2) 试确定a,b,x的值,使得纸盒的体积最大,并求出最大值2、(2017徐州、连云港、宿迁三检)某景区修建一栋复古建筑,其窗户设计如图所示圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(,为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域已知圆的半径为1m,且设,透光区域的面积为(1)求关于的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好当该比值最大时,求
7、边的长度ABCDFEO(第18题)G3、(2016南通、扬州、泰州、淮安三调)某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD为中心在圆心的矩形,现计划将矩形ABCD区域设计为可推拉的窗口(1) 若窗口ABCD为正方形,且面积大于 m2(木条宽度忽略不计),求四根木条总长的取值范围;(2) 若四根木条总长为6 m,求窗口ABCD面积的最大值4、为响应新农村建设,某村计划对现有旧水渠进行改造,已知旧水渠的横断面是一段抛物线弧,顶点为水渠最底端(如图),渠宽为4m,渠深为2m(1) 考虑到农村耕地面积的减少,为节约水资源,要减少水渠的过水量,在原水渠内填土,使其成为横断面为等腰梯形的新水渠,新水渠底面与地面平行(不改变渠宽),问新水渠底宽为多少时,所填土的土方量最少?(2) 考虑到新建果园的灌溉需求,要增大水渠的过水量,现把旧水渠改挖(不能填土)成横断面为等腰梯形的新水渠,使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽5、一个帐篷的形状如图,下部分是高为1m的正六棱柱,上部分是侧棱长为3m的正六棱锥.试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?
限制150内