专题24 以几何体为载体的应用题(解析版).docx
《专题24 以几何体为载体的应用题(解析版).docx》由会员分享,可在线阅读,更多相关《专题24 以几何体为载体的应用题(解析版).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24 以几何体为载体的应用题在江苏高考的试题中,应用题是每年必考的题型,应用题主要体现了学生运用数学知识解决实际问题的能力。近几年来应用题以几何背景呈现的居多,特别是一些几何体如直棱柱、圆锥、圆柱、球等简单的几何体的面积或体积有关。因此,在复习中要特别重视以几何题为背景的函数应用题。解决此类问题的关键明确各个量之间的关系,运用立体几何的知识点求出各种量,然后表示出面积、体积建立目标函数。一、 例题选讲题型一、多面体有关的应用题例1、(2019苏州三市、苏北四市二调)一栋新农村别墅,它由上部屋顶和下部主体两部分组成如图,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,
2、左右两坡屋面EAD和FBC是全等的三角形点F在平面ABCD和BC上的射影分别为H,M.已知HM5 m,BC10 m,梯形ABFE的面积是FBC面积的2.2倍设FMH.(1) 求屋顶面积S关于的函数关系式;(2) 已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低? (1)先通过线面垂直得到FHHM,放在RtFHM中,求出FM,根据三角形的面积公式求出FBC的面积,根据已知条件就可以得到所求S关于的函数关系式(2)先求出主体高度,进而建立出别墅总造价y关于的函数关系式,再
3、通过导数法求函数的最小值(1)规范解答 由题意FH平面ABCD,FMBC,又因为HM平面ABCD,得FHHM.(2分)在RtFHM中,HM5,FMH,所以FM.(4分)因此FBC的面积为10.从而屋顶面积S2SFBC2S梯形ABFE222.2.所以S关于的函数关系式为S.(6分)(2)在RtFHM中,FH5tan,所以主体高度为h65tan.(8分)所以别墅总造价为ySkh16kkk96k80k96k.(10分)记f(),0,所以f(),令f()0,得sin,又0,所以.(12分)列表:f()0f()所以当时,f()有最小值答:当为时,该别墅总造价最低(14分) 理解题意,建立出函数的关系式,
4、是处理最优解类型应用问题的关键,第(1)问,抓住条件”梯形ABFE的面积是FBC面积的2.2倍”,只要用表示出FBC面积,即可得到屋顶面积第(2)问,需要先设出总造价为y元,抓住已知条件,求出主体高度并结合第(1)问中求得的屋顶面积,就可以建立函数关系式题型二、与球、圆有关的应用题例2、(2018苏北四市期末)某艺术品公司欲生产一款迎新春工艺礼品,该礼品由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1,为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形ABC绕底边BC上的高所在直线AO旋转180而成,如图2,已知圆O的半径为10 cm,设BAO,0,圆锥的侧面积为S cm2.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题24 以几何体为载体的应用题解析版 专题 24 几何体 载体 应用题 解析
限制150内