《成人远程教育中深度学习的可应用性(共4625字).doc》由会员分享,可在线阅读,更多相关《成人远程教育中深度学习的可应用性(共4625字).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、成人远程教育中深度学习的可应用性(共4625字)摘要:随着科技的进步,人工智能的发展与普及,作为以远程教育为主的成人高校,不断优化网上学习资源,在保证统一的学习环境下,为每个学生打造适合自己的专属课程,不断优化教学模式,是成人教育高校学习支持服务一直努力的方向。针对学生用户的个性特征、需求差异,推荐个性化教育资源是当今智能化学习领域研究的重点之一,也是我们构建个性化学习支持服务的关键。关键词:机器学习;深度学习;推荐算法;远程教育深度学习(DeepLearning),也叫阶层学习,是机器学习领域研究的分支,它是学习样本数据的表示层次和内在规律,在学习的过程中获取某些信息,对于数据的解释有巨大帮
2、助。比如对文字数据的学习,在网络上获取关键字,对图像数据的学习,进行人脸识别等等。一、深度学习发展概述深度学习是机器学习领域里一种对数据进行表征学习的方法。一句话总结三者之间的关系就是:“机器学习,实现人工智能的方法;深度学习,实现机器学习的技术。深度学习目前是机器学习和人工智能领域研究的主要方向,为计算机图形学、计算机视觉等领域带来了革命性的进步。机器学习最早在1980年被提出,1984年分类与回归树出现,直到1986年,Rumelhart等人反向传播(BackPropaga-tion,BP)算法的提出,解决了感知模型只能处理线性分类的问题,1989年出现的卷积神经网络(Convolutio
3、nalNeuralNet-works,CNN)也因此得到了一定的发展。在1990年至2012年,机器学习逐渐成熟并施以应用,GeoffreyHinton在2006年设计出了深度信念网络,解决了反向传播算法神经网络中梯度消失的问题,正式提出了深度学习的概念,逐渐走向深度学习飞速发展的时期。随后,各种具有独特神经处理单元和复杂层次结构的神经网络不断涌现,深度学习技术不断提高人工智能领域应用方面的极限。二、深度学习主要模型1、卷积神经网络卷积神经网络(ConvolutionalNeuralNetworks,CNN)是指有着深度结构又包含着卷积计算的前馈神经网络。卷积物理上理解为系统某一时刻的输出是有
4、多个输入共同叠加的结果,就是相当于对一个原图像的二次转化,提取特点的过程。卷积神经网络实际上就是一个不断提取特征,进行特征选择,然后进行分类的过程,卷积在CNN里,首先对原始图像进行特征提取。所以卷积神经网络能够得到数据的特征,在模式识别、图像处理等方面应用广泛。一个卷积神经网络主要由三层组成,即卷积层(convolutionlayer)、池化层(poolinglayer)、全连接层(fullyconnectedlayer)。卷积层是卷积神经网络的核心部分,通过一系列对图像像素值进行的卷积运算,得到图像的特征信息,同时不断地加深节点矩阵的深度,从而获得图像的深层特征;池化层的本质是对特征图像进
5、行采样,除去冗杂信息,增加运算效率,不改变特征矩阵的深度;全连接将层间所有神经元两两连接在一起,对之前两层的数据进行分类处理。CNN的训练过程是有监督的,各种参数在训练的过程中不断优化,直到得到最好的结果。目前,卷积神经网络的改进模型也被广泛研究,如全卷积神经网络(FullyConvolutionalNeuralNetworks,FCN)和深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNN)等等。2、循环神经网络区别于卷积神经网络在图片处理领域的应用,循环神经网络(RecurrentNeuralNetwork,RNN)主要应用在自然语言处理领域。RNN最
6、大的特点就是神经元的输出可以继续作为输入,再次利用到神经元中循环使用。RNN是以序列的方式对数据进行读取,这也是RNN最为独特的特征。RNN的串联式结构适用于时间序列的数据,可以完好保持数据中的依赖关系。循环神经网络主要有三层结构,输入层,隐藏层和输出层。隐藏层的作用是对输入层传递进来的数据进行一系列的运算,并将结果传递给输出层进行输出。RNN可用于许多不同的地方。下面是RNN应用最多的领域:1.语言建模和文本生成,给出一个词语序列,试着预测下一个词语的可能性。这在翻译任务中是很有用的,因为最有可能的句子将是可能性最高的单词组成的句子;2.语音识别;3.生成图像描述,RNN一个非常广泛的应用是
7、理解图像中发生了什么,从而做出合理的描述。这是CNN和RNN相结合的作用。CNN做图像分割,RNN用分割后的数据重建描述。这种应用虽然基本,但可能性是无穷的;4.视频标记,可以通过一帧一帧地标记视频进行视频搜索。3、深度神经网络深度神经网络(deepneuralnetworks,DNN)可以理解为有很多隐藏层的神经网络。多层神经网络和深度神经网络DNN其实也是指的一个东西,DNN有时也叫做多层感知机(Mul-ti-Layerperceptron,MLP)。DNN内部的神经网络层也是分为三类,输入层,隐藏层和输出层,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。深度神经网络(
8、DNN)目前作为许多人工智能应用的基础,并且在语音识别和图像识别上有突破性应用。DNN的发展也非常迅猛,被应用到工业自动驾驶汽车、医疗癌症检测等领域。在这许多领域中,深度神经网络技术能够超越人类的准确率,但同时也存在着计算复杂度高的问题。因此,那些能够解决深度神经网络表现准确度或不会增加硬件成本高效处理的同时,又能提升效率和吞吐量的技术是现在人工智能领域能够广泛应用DNN技术的关键。三、深度学习在教育领域的影响1、学生学习方面通过网上学习的实时反馈数据对学生的学习模式进行研究,并修正现有教学模式存在的不足。分析网络大数据,相对于传统在线学习本质区别在于捕捉学生学习过程,有针对性,实现学生个性化
9、学习。举个例子,在学习过程中,可以通过学台对学生学习课程所花费的时间,参与的程度,知识的偏好等等数据加以分析。也可以通过学生学习某门课程的次数,鼠标点击次数、停留的时间等,来推断学生学习情况。通过以上或类似数据汇总分析,可以正向引导学生学习,并给予积极的学习评价。这种利用计算机收集分析出来的客观数据,很好展示了学生学习行为的结果,总结学习规律,而不需要教师多年的教学经验来判断。对于教育研究者而言,利用深度学习技术可以更客观准确地了解学生,使教学工作良好发展更进一步。2、教学方面学台的数据能够对教学模式的适应度进行预测,通过学生的考试成绩和对教师的线上评价等加以分析,能够预测出某一阶段的教学方式
10、发发是否可行,影响如何。通过学生与教师的在线互动,学生测验时完成的时间与完成的结果,都会产生大量的有效的数据,都可以为教师教学支持服务的更好开展提供帮助,从而避免低效率的教学模式造成教学资源的浪费。四、成人远程教育中深度学习技术的可应用性深度学习方面的应用在众多领域都取得了成功,比如电商商品推荐、图像识别、自然语言处理、棋类博弈等等。在远程教育方面,深度学习的技术还有很大的发挥空间,智能网络教育的实现是人们的众望所盼。若要将深度学习技术应用到远程教育平台,首先要清楚学生的需求和教学资源如何分配。1、针对学生的学习需求与学习特征进行分析美国斯坦福大学克里斯•皮希研究团队的研究成果显示
11、,通过对学生知识学习进行时间建模,可以精确预测出学生对知识点的掌握情况,以及学生在下一次学习中的表现。深度学习的应用可以帮助教师推测出学生的学习能力发展水平。通过学生与教学环境的交互行为,分析其学习风格,避免教师用经验进行推断而产生的误差。2、教学资源的利用与分配深度学习技术能够形成智能的分析结论。计算机实时采集数据集,对学生的学习情况加以分析,使教师对学生的学习状态、情绪状态等有更加清晰、准确的了解。有了上面良好的教学模式,教师对学生的学习状态有了更准确的掌握,对学生的学习结果就有了更科学的教学评价。基于深度学习的人工智能技术,还可以辅助教师实现智能阅卷,通过智能阅卷自动总结出学习中出现的问
12、题,帮助教师减少重复性劳动,减轻教师负担。作为成人高校,远程教育是我们的主要教学手段,也是核心教学方式,学校的教学必定是在学生方便学习的同时,以学生的学习效果为重。通过深度学习技术,可以科学地分析出学生的学习效果,对后续教与学给予科学、可靠的数据支撑。我们可以在平台上为每位同学建立学习模型,根据学生的学习习惯为其定制个性化方案,按他们的兴趣进行培养,发挥他们专业的潜能。同时,可以将学生正式在线参加学习和考试的学习行为和非学习时间浏览网站的行为结合到一起,更加科学地分析出学生在学习网站上感兴趣的地方。采用深度学习算法,根据学生学习行为产生的海量数据推算出学生当前状态与目标状态之间的差距,做到精准
13、及时的学习需求反馈。有助于帮助学生明确学习目标,教师确立教学目标,真正做好因材施教。基于深度学习各种智能识别技术,可以为教师的线上教学活动增光添彩,在反馈学生学习状态的同时,采用多种形式的教学方法吸引学生的注意力,增强教学活动的互动性,达到良好的教学效果。结语人工智能是影响世界各领域的关键技术,它也必将与教育相互融合,也终将会改变教育的形态。深度学习技术作为当前科技的前沿技术,我们需要对深度学习技术在教育中的应用进行探讨,用技术完善教学过程,优化学习效果。作为成人高校教师,我们始终贯彻以学生为中心的教育理念,对深度学习技术不断学习与研究,不断丰富学校教育教学的手段,为教育现代化最终目标的实现提供无限可能。参考文献:1刘毅铭.深度学习研究与应用综述J.绿色科技,2019,(6).2张晓芳,张磊.论机器学习及其在教育中的应用J.信息与电脑,2015,(24).3董慧慧.人工智能深度学习概念研究与综述J.电脑编程技巧与维护,2018,(08).4胡越,罗东阳,花奎,等.关于深度学习的综述与讨论J.智能系统学报,2019,(01).5刘丹,李志河.近十年我国深度学习研究综述J.教育现代化,2017,(51).6余明华,冯翔,祝智庭.人工智能视域下机器学习的教育应用与创新探索J.远程教育杂志,2017,(3).第 8 页 共 8 页
限制150内