计算机视觉中深度学习的应用(共3734字).doc
《计算机视觉中深度学习的应用(共3734字).doc》由会员分享,可在线阅读,更多相关《计算机视觉中深度学习的应用(共3734字).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、计算机视觉中深度学习的应用(共3734字)摘要:阐述计算机视觉借助摄影机与计算机取代人眼对事物进行识别、观察和分析的一种机器视觉,深度学习技术在很大程度上促进计算机视觉的发展,探讨计算机视觉领域中的深度学习技术的应用实例。关键词:计算机工程;视觉领域;深度学习技术引言计算机视觉简言之即是依靠电子设备成像来代替生物视觉系统,随后依靠提前写好的程序对获取的图像信息实施处理。该技术的短期应用目的在于完成相对简单的智能视觉工作,而深度学习技术在计算机视觉领域的应用,在很大程度上丰富了其功能,提高了识别效率,让其能够在更多行业发挥出自身价值。1计算机视觉领域的深度学习技术1.1图像分类中的深度学习技术基
2、于深度学习技术,卷积神经网络得到了进一步的发展,其应用范围也更为宽泛,例如说在图像分类中的运用。图像分析需要对图像实施扫描分析,随后对其具体类别予以划分,更加注重其整体语义。目前相对普遍进行图像分类的数据集为ImageNet,其中囊括了非常丰富的内容,存储了近1500万个图像的URL并将图像划分为数万余个类型。ImageNet每年组织开展的大规模视觉识别挑战赛(ILSVRC)中,图像分类算法与技术也不断创新,图像分类的准确性也持续提升。ImageNet数据集表现出规模大、类型多的突出特点,所以更加适用于迁移学习,即是把部分核心技术或结构拓展应用到各个领域,对于视觉领域的深度模型来说,能够把模型
3、内的网络结构和参数直接共享到其他数据集,从而对数据实施微调。图像分类属于计算机视觉领域最为基础的环节,对于图像分类模型创建和数据分析处理经验也能够迁移应用到其他领域中。1.2目标检测中的深度学习技术目标检测相对于图像分类而言表现出更多的复杂性,主要任务是在囊括多种不同类型物体的图像内精确定位和识别某一物体,恰恰是出于这一目的,深度学习技术在目标检测中的应用更为复杂,要实现更加精准的效果也相对更难。近年来针对目标检测的算法日益更新,如优化后的R-CNN算法,是借助于卷积神经网络思想,对物体进行分类,提取物体特征。而SelectiveSearch算法的出现有了进一步的创新和突破,有效促进了检测准确
4、性的提高,这也给通过卷积神经网络进行目标检测带来了更多可能性,随后的FastR-CNN算法极大地促进了目标检测效率的提升,该算法对提取候选区的问题予以优化,大大减少了候选区提取和目标检测过程的时间。目标检测网络以FastR-CNN算法作为支撑,于输出位置设置滑动窗同时和候选区域网络实施连接,目标检测的关键在于卷积神经网络,依靠它把各个点的特征进行提取,再借助回归算法获得对应范围出现目标的概率1。1.3人脸识别中的深度学习技术人脸识别主要是借助相应算法对人脸特征实施提取,因为其建立的人脸模型表现出一定的不稳定性,因此模型建立往往也表现出一定的难度,相对于建立刚体模型而言更为困难。人脸识别通常来说
5、涉及人脸检测定位以及特征提取两个方面,人脸检测定位是基于背景图像中将人脸目标分割出来,实施归一化处理,而人脸特征提取算法不变。前者存在的技术难点是人脸目标具有多样性以及背景图像具有复杂性,所以对背景情境实施合理假设并予以简化是十分关键的。与此同时,高维空间人脸模型的建立较为复杂,精确度估算难度较大,人脸特征提取的技术难度是因为人脸属于弹性模型,其难度超过刚体模型。一般来说,较为常见对人脸特征实施提取与识别的方法有几何特征法、特征脸算法以及弹性模型法,CNN算法和过去的特征提取算法比起来表现出更高的稳定性和适用性,同时能够有效抵抗外部干扰,促进人脸识别技术的推广应用。2应用实例2.1安防领域的应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机 视觉 深度 学习 应用 3734
限制150内