2022年二项式定理知识点和各种题型归纳带答案 .pdf
《2022年二项式定理知识点和各种题型归纳带答案 .pdf》由会员分享,可在线阅读,更多相关《2022年二项式定理知识点和各种题型归纳带答案 .pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习资料收集于网络,仅供参考学习资料二项式定理1二项式定理:011()()nnnrnrrnnnnnnabC aC abC abC bnN,2基本概念:二项式展开式:右边的多项式叫做()nab的二项展开式。二项式系数 : 展开式中各项的系数rnC(0,1,2, )rn. 项数:共(1)r项,是关于a与b的齐次多项式通项:展开式中的第1r项rnrrnC ab叫做二项式展开式的通项。用1rn rrrnTC ab表示。3注意关键点:项数:展开式中总共有(1)n项。顺序:注意正确选择a,b, 其顺序不能更改。()nab与()nba是不同的。指数:a的指数从n逐项减到0,是降幂排列。b的指数从0逐项减到n
2、,是升幂排列。各项的次数和等于n. 系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,.rnnnnnnCCCCC项的系数是a与b的系数(包括二项式系数)。4常用的结论:令1,abx0122(1)()nrrnnnnnnnxCC xC xC xC xnN令1,abx0122(1)( 1)()nrrnnnnnnnnxCC xC xC xC xnN5性质:二项式系数的对称性:与首末两端 “对距离” 的两个二项式系数相等,即0nnnCC, 1kknnCC二项式系数和:令1ab, 则二项式系数的和为0122rnnnnnnnCCCCC,变形式1221rnnnnnnCCCC。奇数项的二项式系数和
3、=偶数项的二项式系数和:在二项式定理中,令1,1ab,则0123( 1)(1 1)0nnnnnnnnCCCCC,从而得到:0242132111222rrnnnnnnnnnCCCCCCC奇数项的系数和与偶数项的系数和:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 8 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料0011222012012001122202121001230123()()1,(1)1,(1)nnnnnnnnnnnnnnnnnnnnnnnnnnn
4、naxC a xC axC axC a xaa xa xa xxaC a xC axC a xC a xa xa xa xaxaaaaaaxaaaaaa令则令则024135(1)(1),()2(1)(1),()2nnnnnnaaaaaaaaaaaa得奇数项的系数和得偶数项的系数和二项式系数的最大项:如果二项式的幂指数n是偶数时,则中间一项的二项式系数2nnC取得最大值。如果二项式的幂指数n是奇数时,则中间两项的二项式系数12nnC,12nnC同时取得最大值。系数的最大项:求()nabx展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为121,nAAA,设第1r项系数最大,应有112
5、rrrrAAAA,从而解出r来。6二项式定理的十一种考题的解法:题型一:二项式定理的逆用;例:12321666 .nnnnnnCCCC解:012233(16)6666nnnnnnnnCCCCC与已知的有一些差距,123211221666(666 )6nnnnnnnnnnnCCCCCCC0122111(6661)(16)1(71)666nnnnnnnnCCCC练:1231393 .nnnnnnCCCC解:设1231393nnnnnnnSCCCC,则122330122333333333331(13)1nnnnnnnnnnnnnnnSCCCCCCCCC(13)14133nnnS题型二:利用通项公式求
6、nx的系数;例:在二项式3241()nxx的展开式中倒数第3项的系数为45,求含有3x的项的系数?解:由条件知245nnC,即245nC,2900nn,解得9()10nn舍去 或,由精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 8 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料2102110343411010()()rrrrrrrTCxxC x,由题意1023,643rrr解得,则含有3x的项是第7项6336 110210TC xx, 系数为210。练:求2
7、91()2xx展开式中9x的系数?解:2918218 31999111()()()()222rrrrrrrrrrrTCxC xxCxx,令1839r, 则3r故9x的系数为339121()22C。题型三:利用通项公式求常数项;例:求二项式2101()2xx的展开式中的常数项?解:52021021101011()()()22rrrrrrrTCxCxx, 令52 002r, 得8r, 所以88910145( )2256TC练:求二项式61(2)2xx的展开式中的常数项?解:666216611(2 )( 1) ()( 1)2()22rrrrrrrrrrTCxCxx,令620r,得3r,所以3346(
8、 1)20TC练:若21()nxx的二项展开式中第5项为常数项,则_.n解:4244421251()()nnnnTCxC xx,令2120n,得6n. 题型四:利用通项公式,再讨论而确定有理数项;例:求二项式93()xx展开式中的有理项?解:12719362199()()( 1)rrrrrrrTCxxC x,令276rZ,(09r) 得39rr或,所以当3r时,2746r,334449( 1)84TC xx,当9r时,2736r,3933109( 1)TC xx。题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若2321()nxx展开式中偶数项系数和为256,求n. 解:设2321()
9、nxx展开式中各项系数依次设为01,naaa精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 8 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料1x令, 则有010,naaa,1x令, 则有0123( 1)2 ,nnnaaaaa将- 得:1352()2 ,naaa11352,naaa有题意得,1822562n,9n。练:若35211()nxx的展开式中,所有的奇数项的系数和为1024,求它的中间项。解:0242132112rrnnnnnnnnCCCCCCC,12
10、1024n,解得11n所以中间两个项分别为6,7nn,5654355 1211() ()462nTCxxx,61156 1462Tx题型六:最大系数,最大项;例:已知1(2 )2nx,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,nnnCCCnn解出714nn或,当7n时,展开式中二项式系数最大的项是45TT和34347135( ) 2,22TC的系数,434571( ) 270,2TC的系数当14n时,展开式中二项式系数最大的项是8T,7778141C() 234322T的系数。练:在2()nab的展开式中,二项式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二项式定理知识点和各种题型归纳带答案 2022 二项式 定理 知识点 各种 题型 归纳 答案
限制150内