2022年导数知识点归纳及应用5 .pdf
《2022年导数知识点归纳及应用5 .pdf》由会员分享,可在线阅读,更多相关《2022年导数知识点归纳及应用5 .pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载导数知识点归纳及应用知识点归纳一、相关概念1导数的概念函数 y=f(x),如果自变量 x 在 x0处有增量x,那么函数 y 相应地有增量y=f(x0+x) f(x0) , 比值xy叫做函数 y=f(x) 在 x0到 x0+x之间的平均变化率, 即xy=xxfxxf)()(00。如果当0 x时,xy有极限,我们就说函数 y=f(x) 在点 x0处可导,并把这个极限叫做f(x)在点 x0处的导数,记作 f (x0)或 y|0 xx。即 f (x0)=0limxxy=0limxxxfxxf)()(00。注意:(1)函数 f(x)在点 x0处可导,是指0 x时,xy有极限。如果xy不存
2、在极限,就说函数在点x0处不可导,或说无导数。(2)x是自变量 x 在 x0处的改变量,0 x时,而y是函数值的改变量,可以是零。由导数的定义可知,求函数y=f (x)在点 x0处的导数的步骤:求函数的增量y=f(x0+x)f (x0) ;求平均变化率xy=xxfxxf)()(00;取极限,得导数f (x0)=xyx0lim。例:设 f(x)= x|x|, 则 f ( 0)= . 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 14 页 - - - - - - - - - - 学习必备欢迎下载
3、 解析 :0|lim|lim)(lim)0()0(lim0000 xxxxxxfxfxfxxxxf ( 0)=0 2导数的几何意义函数 y=f(x)在点 x0处的导数的几何意义是曲线y=f(x) 在点 p (x0,f (x0) )处的切线的斜率。也就是说,曲线y=f (x)在点 p(x0,f(x0) )处的切线的斜率是f (x0) 。相应地,切线方程为yy0=f/(x0) (xx0) 。例:在函数xxy83的图象上, 其切线的倾斜角小于4的点中,坐标为整数的点的个数是( ) A3 B2 C1 D0 解析 :切线的斜率为832/xyk又切线的倾斜角小于4,即10k故18302x解得:338383
4、xx或故没有坐标为整数的点3. 导数的物理意义若物体运动的规律是s=s (t) , 那么该物体在时刻 t的瞬间速度 v=s(t) 。若物体运动的速度随时间的变化的规律是v=v(t) ,则该物体在时刻t 的加速度 a=v(t ) 。例:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 14 页 - - - - - - - - - - 学习必备欢迎下载这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是()答:A。练习:已知质点 M按规律3
5、22ts做直线运动(位移单位: cm ,时间单位: s) 。(1)当 t=2 ,01. 0t时,求ts;(2)当 t=2 ,001. 0t时,求ts;(3)求质点 M在 t=2 时的瞬时速度。答案: (1)8.02scm(2)8.002scm; (3)8scm二、导数的运算1基本函数的导数公式 : 0;C(C为常数)1;nnxnx(sin)cosxx; (cos )sinxx; ();xxee()lnxxaaa; 1ln xx; 1lglogaaoxex. 例1:下列求导运算正确的是s t O As t O s t O s t O BCD精品资料 - - - 欢迎下载 - - - - - -
6、- - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 14 页 - - - - - - - - - - 学习必备欢迎下载( ) A(x+211)1xx B(log2x) =2ln1xC(3x) =3xlog3e D (x2cosx) =-2xsinx 解析 :A错,(x+211)1xx B正确,(log2x) =2ln1xC错,(3x) =3xln3 D错,(x2cosx) =2xcosx+ x2(-sinx) 例 2:设f0(x) sinx,f1(x) f0(x),f2(x)f1(x) ,fn1(x) fn(x) ,nN,则f2005(x)( ) As
7、inx Bsinx CcosxDcosx 解析 :f0(x) sinx,f1(x) f0(x)=cosx,f2(x) f1(x)= -sinx,f3(x) f2(x)= -cosx, f4(x) f3(x)=sinx,循环了则f2005(x) f1(x)cosx2导数的运算法则法则 1:两个函数的和 (或差) 的导数, 等于这两个函数的导数的和( 或差),即: (.)vuvu精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 14 页 - - - - - - - - - - 学习必备欢迎下载法则
8、2:两个函数的积的导数 , 等于第一个函数的导数乘以第二个函数, 加上第一个函数乘以第二个函数的导数,即:.)(uvvuuv若 C为常数 ,则0)(CuCuCuuCCu. 即常数与函数的积的导数等于常数乘以函数的导数:.)(CuCu法则 3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:vu2vuvvu(v0) 。例:设 f(x) 、g(x) 分别是定义在R 上的奇函数和偶函数, 当 x0时,)()()()(xgxfxgxf0. 且 g(3)=0. 则不等式 f(x)g(x)0 的解集是 ( ) A (-3,0)(3,+ ) B (-3,0)(0,
9、3) C (-,- 3)(3,+ ) D (-,- 3) (0, 3) 解析 :当 x0 时,)()()()(xgxfxgxf0,即0)()(/xgxf当 x0 时,f(x)g(x)为增函数,又 g(x) 是偶函数且 g(3)=0 ,g(-3)=0 ,f(-3)g(-3)=0 故当3x时,f(x)g(x)0,又 f(x)g(x)是奇函数,当 x0 时,f(x)g(x)为减函数,且 f(3)g(3)=0 故当30 x时,f(x)g(x)0 故选 D 3. 复合函数的导数形如 y=fx()的函数称为复合函数。复合函数求导步骤:分解 求导 回代。精品资料 - - - 欢迎下载 - - - - - -
10、 - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 14 页 - - - - - - - - - - 学习必备欢迎下载法则: y|X= y |Uu|X或者 ( )()*( )fxfx.练习: 求下列各函数的导数:(1);sin25xxxxy(2));3)(2)(1(xxxy(3);4cos212sin2xxy(4).1111xxy解:(1) ,sinsin23232521xxxxxxxxyy.cossin2323)sin()()(232252323xxxxxxxxxx(2)y=(x2+3x+2) (x+3)=x3+6x2+11x+6,y=3x2+12
11、x+11. (3)y=,sin212cos2sinxxx.cos21)(sin21sin21xxxy(4)xxxxxxxy12)1)(1 (111111,.)1(2)1()1 (21222xxxxy三、导数的应用1. 函数的单调性与导数(1)设函数)(xfy在某个区间( a,b)可导,如果f)(x0,则)(xf在此区间上为增函数; 如果f0)(x,则)(xf在此区间上为减函数。(2)如果在某区间内 恒有f0)(x,则)(xf为常数 。例:函数13)(23xxxf是减函数的区间为( ) A), 2( B)2,( C )0,( D (0,2) 解析 :由xxxf63)(2/0,得 0 x0, 当1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年导数知识点归纳及应用5 2022 导数 知识点 归纳 应用
限制150内