2022年平面向量空间向量知识点 .pdf
《2022年平面向量空间向量知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年平面向量空间向量知识点 .pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面向量 2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度. 2、 既有大小又有方向的量叫做向量 . 2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段 ,有向线段包含三个要素:起点、方向、长度. 2、 向量AB的大小,也就是向量AB的长度(或称 模) ,记作AB;长度为零的向量叫做零向量 ;长度等于1 个单位的向量叫做单位向量 . 3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. 2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量 . 2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平
2、行四边形加法法则. 2、baba. 2.2.2、向量减法运算及其几何意义1、 与a长度相等方向相反的向量叫做a的相反向量 . 2、 三角形减法法则和平行四边形减法法则. 2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量a的积是一个向量,这种运算叫做向量的数乘 .记作:a,它的长度精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 8 页 - - - - - - - - - - 和方向规定如下:aa, 当0时, a的方向与a的方向相同;当0时, a的方向与a的方向相反 . 2、 平面向量共
3、线定理:向量0aa与b共线,当且仅当有唯一一个实数,使ab. 2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,ee是同一平面内的两个不共线向量,那么对于这一平面内任一向量a,有且只有一对实数21,,使2211eea. 2.3.2、平面向量的正交分解及坐标表示1、yxjyi xa,. 2.3.3、平面向量的坐标运算1、 设2211,yxbyxa,则:2121,yyxxba,2121,yyxxba,11, yxa,1221/yxyxba. 2、 设2211,yxByxA,则:1212,yyxxAB. 2.3.4、平面向量共线的坐标表示1、设332211,yxCyxByxA,则线段 A
4、B 中点坐标为222121,yyxx, ABC 的重心坐标为33321321,yyyxxx. 2.4.1、平面向量数量积的物理背景及其含义1、cosbaba. 2、a在b方向上的投影为:cosa. 3、22aa. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 8 页 - - - - - - - - - - 4、2aa. 5、0baba. 2.4.2 、平面向量数量积的坐标表示、模、夹角1、 设2211,yxbyxa,则:2121yyxxba2121yxa121200aba bx xy y12
5、21/ /0ababx yx y2、 设2211,yxByxA,则:212212yyxxAB. 3、 两向量的夹角公式121222221122cosx xy ya ba bxyxy4、点的平移公式平移前的点为( ,)P x y(原坐标),平移后的对应点为(,)Px y(新坐标) ,平移向量为( , )PPh k,则.xxhyyk函数( )yfx的图像按向量( , )ah k平移后的图像的解析式为().ykf xh 2.5.1、平面几何中的向量方法 2.5.2、向量在物理中的应用举例空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳. 1
6、、直线的方向向量和平面的法向量直线的方向向量:若 A、B 是直线l上的任意两点,则AB为直线l的一个方向向量;与AB平行的任意非精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 8 页 - - - - - - - - - - 零向量也是直线l的方向向量 . 平面的法向量:若向量n所在直线垂直于平面,则称这个向量垂直于平面, 记作n,如果n,那么向量n叫做平面的法向量 . 平面的法向量的求法(待定系数法):建立适当的坐标系设平面的法向量为( , , )nx y z求出平面内两个不共线向量的坐标12
7、3123(,),( ,)aa aabb b b根据法向量定义建立方程组00n an b. 解方程组,取其中一组解,即得平面的法向量 . (如图)1、 用向量方法判定空间中的平行关系线线平行设直线12,l l的方向向量分别是a b、,则要证明1l2l,只需证明ab,即()akb kR. 即:两直线平行或重合两直线的方向向量共线。线面平行 (法一)设直线l的方向向量是a, 平面的法向量是u, 则要证明l, 只需证明au,即0a u. 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年平面向量空间向量知识点 2022 平面 向量 空间 知识点
限制150内