湘教版七年级下册数学教案范例.doc
《湘教版七年级下册数学教案范例.doc》由会员分享,可在线阅读,更多相关《湘教版七年级下册数学教案范例.doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、湘教版七年级下册数学教案范例所谓教案的艺术性就是构思巧妙,能让学生在课堂上不仅能学到知识,而且得到艺术的欣赏和快乐的体验。教案要成为一篇独具特色“课堂教学散文”或者是课本剧。所以,开头、经过、结尾要层层递进,扣人心弦,达到立体教学效果。下面是为大家整理的湘教版七年级下册数学教案范例5篇,希望大家能有所收获!湘教版七年级下册数学教案范例1第1教案教学目标1.能结合实例,了解一元一次不等式组的相关概念。2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。教学重、难点1.不等式组的解集的概念。2.根据实际问题列不等式组。
2、教学方法探索方法,合作交流。教学过程一、引入课题:1.估计自己的体重不低于多少千克不超过多少千克若没体重为x千克,列出两个不等式。2.由许多问题受到多种条件的限制引入本章。二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。分别解出两个不等式。把两个不等式解集在同一数轴上表示出来。找出本题的答案。三、抽象:教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)四、拓展:合作解决第4页“动脑筋”1.分组合作:每人先自己读题填空,然后与同组内同学交流。2.讨论交流,求出这个不等式的解集。五、练习:P5练习题。六、小结:通过体课学习,你有什么收获七、作业:
3、第5页习题1.1A组。选作B组题。后记:1.2一元一次不等式组的解法第2教案教学目标1.会解由两个一元一次不等式组成的不等式组,会用数轴确定解决。2.让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要思想方法。3.培养勇于开拓创新的精神。教学重点解决由两个不等式组成的不等式组。教学难点学生归纳解一元一次不等式组的步骤。教学方法合作交流,自己探究。教学过程一、做一做。1.分别解不等式x+43。2.将1中各不等式解集在同一数轴上表示出来。3.说一说不等式组的解集是什么4.讨论交流,怎样解一元一次不等式组二、新课1.解不等式组的概念。2.例1:解不等式组:教师讲解,提醒学生注意防止出现符号错误和
4、运算错误。注意“lt;”和“”在数轴表示时的差别。3.例2:解不等式组:学生解出不等式(1)、(2)。并把解集表示在同一数轴上。讨论:本不等式组的解集是什么4.例3:解不等式组:解出不等式(1)、(2)。并把解集表示在同一数轴上。讨论:本不等式组的解集是什么(空集)说明:本题可说“这个不等式组无解”或“这个不等式组的解集是空集”。简单介绍“空集”。5.思考:(1)说出下列不等式组的解集:(2)讨论(1)中有什么规律三、练习1.P8练习题。2.如果ab,说说下列不等式组的解集。3.如果不等式组的解集是xa。那么a_3(填“”“lt;”“”或“”)四、小结。说一说怎样解不等式组五、作业。习题1.2
5、A组题选作B组题。后记:1.3一元一次不等式组的应用(1)第3教案教学目标1.能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。2.渗透“数学建模”思想。化理论。3.提高分析问题解决问题能力。教学重点分析实际问题列不等式组。教学难点1.找实际问题中的不等关系列不等式组。2.有条理的表达思考过程。教学过程一、创设问题情境。本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。出示问题:某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分A、B两类。A类年票每张100元,持票者每次进入公园无需再购买门票。B类年票每张50元,持票者进入
6、公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买A类年票最合算吗二、建立模形。1.分析题意回答:游客购买门票,有几种选取择方式设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少买A类年票最合算,应满足什么关系2.讨论交流,列出不等式组。3.解不等式组,说出问题的答案。三、应用。学生讨论、交流。1.什么情况下,购买每次10元的门票最合算。2.什么情况下,购买B类年票最合算学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。四、练习。某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校
7、有多少寄宿生有多少间宿舍(提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)五、小结列一元一次不等式组,解决实际问题的基本步骤是什么(讨论、交流,指名回答)湘教版七年级下册数学教案范例2教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究
8、举出一些生活中常遇到的具有相反意义的量,如温度是零上7和零下5,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗你能再举一些日常生活中具有相反意义的量吗该如何表示它们呢为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同
9、学用正负数表示.讨论什么样的数是负数什么样的数是正数0是正数还是负数自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高【例1】举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记
10、为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱存进了多少钱(2
11、)储蓄罐中的钱与原来相比是多了还是少了(3)如果不用正、负数的方法记账,你还可以怎样记账比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+
12、30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和
13、不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容2.怎样用正数和负数表示具有相反意义的量(用正数表示其中具有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来
14、分别表示它们.问题1:“零”为什么既不是正数也不是负数呢学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0m.问题2:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类分别是什么(二)深化理解,解决问题问题3:(课本P3例题)【例1】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,
15、德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.19901995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少
16、130,新西兰增长434,泰国减少3247,孟加拉减少88.(1)用正数和负数表示这六国19901995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系(3)哪个国家森林面积减少最多(4)通过对这些数据的分析,你想到了什么阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97mm的零件是否合格2.你知道还有哪些事件可以用正负数表示允许误差吗请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12,乙冷库的温度比甲冷库低5,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是90.05(单位:mm),表示这种零件的标准
17、尺寸是9mm,加工要求不超过标准尺寸多少最小不小于标准尺寸多少3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减-5+7-3+4根据上面的记录,问:哪几天生产的摩托车比计划量多星期几生产的摩托车最多,是多少辆星期几生产的摩托车最少,是多少辆类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)【1.2有理数】第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点
18、:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,-3,-7.4,5.2议一议你能说说这些数的特点吗学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试
19、试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高【例1】把下列各数填入相应的集合内:,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗为什么有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗(五)课堂跟踪反馈夯实基础1.把下列各数填入相
20、应的大括号内:-7,0.125,-3,3,0,50%,-0.3(1)整数集合;(2)分数集合;(3)负分数集合;(4)非负数集合;(5)有理数集合.2.下列说法中正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问
21、题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容数轴.【点拨】(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版七 年级 下册 数学教案 范例
限制150内