等腰三角形判定教案.doc
《等腰三角形判定教案.doc》由会员分享,可在线阅读,更多相关《等腰三角形判定教案.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等腰三角形判定教案本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们
2、说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。(2)等腰三角形的性质定理的内容是什么并检验它的逆命题是否为真命题启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,ABC中,B=C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知B=C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅
3、助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:等腰三角形定义;等腰三角形判定定理.证明三
4、角形是等边三角形的方法:等边三角形定义;推论1;推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性它与相邻的内角互补;它等于与它不相邻的两个内角的和.要证AB=AC,可先证明B=C,因为已知1=2,所以可以设法找出B、C与1、2的关系.已知:CAE是ABC的外角,1=2,ADBC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,B=D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,
5、需构造一个以CB、CD为腰的等腰三角形,连结BD,需证CBD=CDB,但已知B=D,由AB=AD可证ABD=ADB,从而证得CDB=CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE/BC交AC与F,交AB于E,求证:EF=BE-CF.分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明:DE/BC(已知),BE=DE,同理DF=CF
6、.EF=DE-DFEF=BE-CF小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材P.75中1、2、3.八.作业教材P.83中1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案212.3.1.2等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的
7、能力.教学重点等腰三角形的判定定理的探索和应用。教学难点等腰三角形的判定与性质的区别。教具准备作图工具和多媒体课件。教学方法引以学生为主体的讨论探索法;教学过程.提出问题,创设情境1.等腰三角形性质是什么性质1等腰三角形的两底角相等.(等边对等角)性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.(等腰三角形三线合一)2、提问:性质1的逆命题是什么如果一个三角形有两个角相等,那么这个三角形是等腰三角形。这个命题正确吗下面我们来探究:.导入新课大胆猜想:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为
8、数学语言的方法.例1已知:在ABC中,B=C(如图).求证:AB=AC.教师可引导学生分析:BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知B=C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.(学生板演证明过程)证明:作BAC的平分线AD.在BAD和CAD中12,BC,ADAD,BADCAD(AAS).AB=AC.提问:你还有不同的证明方法吗(由学生口述证明过程)等腰三角形的判定定理:如
9、果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:在ABC中B=CAB=AC(等角对等边)4、等腰三角形的性质与判定有区别吗性质是:等边等角判定是:等角等边小结:证明三角形是等腰三角形的方法:等腰三角形定义;等腰三角形判定定理.下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.(演示课件)例2求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.已知:CAE是ABC的外角,1=2,ADBC(如图).求证:AB=AC.同学们先
10、思考,再分析.(由学生完成)要证明AB=AC,可先证明B=C.接下来,可以找B、C与1、2的关系.(演示课件,括号内部分由学生来填)证明:ADBC,1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等).又1=2,B=C,AB=AC(等角对等边).看大屏幕,同学们试着完成这个题.(课件演示)已知:如图,ADBC,BD平分ABC.求证:AB=AD.(投影仪演示学生证明过程)证明:ADBC,ADB=DBC(两直线平行,内错角相等).又BD平分ABC,ABD=DBC,ABD=ADB,AB=AD(等角对等边).下面来看另一个例题.(演示课件)例2、已知等腰三角形的底边等于a,底边上的高等于
11、b,你能用尺规作图的方法作出EA12DBCADBCMA这个等腰三角形吗ab作法:(1)作线段BC,使BC=a;(2)作BC的垂直平分线MN,交BC于D;(3)在MN上截取DA=h,得A点;(4)连结AB、AC,则ABC即为所求等腰三角形。例3、思考:在ABC中,已知,BO平分ABC,CO平分ACB.过点O作直线EF/BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形说明理由.(2)线段EF和线段EB,FC之间有没有关系若有是什么关系.随堂练习(一)课本P791、2、3、4.课时小结1、等腰三角形的判定方法有下列几种:定义,判定定理。2、等腰三角形的判定定理与性质定理的区别是:条件和结
12、论刚好相反。3、运用等腰三角形的判定定理时,应注意在同一个三角形中。.作业布置:学力水平:必做42页1-7题选做42页8-10题412.3.1.2等腰三角形判定马静云香河县第六中学等腰三角形判定教案3教学目标(一)知识与能力:1.理解并掌握等腰三角形的判定定理,2.综合应用等腰三角形的性质定理和判定定理(二)过程与方法:通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力。(三)情感、态度与价值观:通过引导学生观察,发现等腰三角形的判定方法,让学生从实践中获得成功体验,增强学习兴趣。教学重难点重点:等腰三角形的判定定理的探索和应用。难点:等腰三角形的判定与性质的区
13、别。二、教学过程(一)复习导课1、复习等腰三角形的定义,等腰三角形的性质。设计意图:为本节等腰三角形的判定做铺垫,让学生把知识很好的联系起来.2、“等腰三角形的两底角相等”,反过来说成立吗猜想。设计意图:这样导入课题,不仅可以复习相关知识,也可以激发学生不断学习的热情。(二)探究新知1、实践请同学们用直尺和量角器画ABC,使B=C,再用刻度尺量一量线段AB,AC的长,然后,把你的ABC剪下来,折叠,观察线段AB,AC的长。(学生画图、测量,剪纸,折叠)想一想:你能从上面的结果中发现了什么规律从实践再次猜想设计意图:培养学生的动手能力,从实践中得出等腰三角形的判定定理。2、证明:思考:如何证明请
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰三角形 判定 教案
限制150内