2022年二元一次方程组考点总结及练习.docx
《2022年二元一次方程组考点总结及练习.docx》由会员分享,可在线阅读,更多相关《2022年二元一次方程组考点总结及练习.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二元一次方程组考点解析考点一二元一次方程 组的解的概念x【例 1】已知y2,是二元一次方程组1mxnynxmy8,的解 ,就 2m-n 的算术平方根为 1A.4B.2C.2D. 2x【解析】 把y2,代入方程组1mxnynxmy8,2mn得12nm8,m3,解得1.n2.所以 2m-n=4,4 的算术平方根为 2.应选 B.【方法归纳】 方程 组的解肯定满意原方程组,所以将已知解代入含有字母的原方程组,得到的等式肯定成立 ,从而转化为一个关于所求字母的新方程组,解这个方程 组即可求得待求字母的值.变式练习1. 如方程组axyb,xbya的解是x 1,y 1.求a+b2-a-ba+b 的值.考点
2、二二元一次方程组的解法【例 2】解方程组:xy2xy1,8.【分析】 可以直接把代入,消去未知数x,转化成一元一次方程求解.也可以由变形为x-y=1,再用加减消元法求解 .【解答】 方法一:将代入到中,得2y+1+y=8.解得 y=2.所以 x=3.因此原方程组的解为x 3,y 2.方法二:xy2xy1,8.对进行移项,得x-y=1. +得 3x=9.解得 x=3.将 x=3 代入中,得 y=2.所以原方程组的解为x 3,y 2.【方法归纳】二元一次方程组有两种解法,我们可以依据详细的情形来挑选简便的解法. 假如方程中有未知数的系数是 1 时,一般采纳代入消元法;假如两个方程的相同未知数的系数
3、相同或互为相反数时,一般采纳加减消元法;假如方程组中的系数没有特别规律,通常用加减消元法.变式练习2. 方程组x2 y7x2y5,的解是.133. 解方程组:3x4 y19,xy4.考点三由解的关系求方程组中字母的取值范畴3xy【例 3】如关于 x、y 的二元一次方程组1a,的解满意 x+y2,就 a 的取值范畴为 x3y3A.a4C.a-4【分析】 此题运用整体思想,把二元一次方程组中两个方程相加,得到x、y 的关系,再依据 x+y2,求得此题答案; 也可以按常规方法求出二元一次方程组的解,再由x+y2 求出 a 的取值范畴,但运算量大.【解答】 由 +,得 4x+4y=4+a,x+y=1+
4、 a ,由 x+y2,得 1+ a 2,解得 a4.应选 A.44【方法归纳】 通过观看两个方程,运用整体思想解题,这是中考中常用的解题方法.变式练习4. 已知 x、 y 满意方程组2xy5,就 x-y 的值为.x2 y4,考点四二元一次方程组的应用【例 4】某中学拟组织九年级师生去黄山举办毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60 座和 45 座两种型号的客车可供租用,60 座客车每辆每天的租金比45 座的贵 200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4 辆 60 座和 2 辆 45 座的客车到韶山参观,一天的租金共计
5、 5 000 元.”小明:“我们九年级师生租用5 辆 60 座和 1 辆 45 座的客车正好坐满 .” 依据以上对话,解答以下问题:(1) 平安客运公司60 座和 45 座的客车每辆每天的租金分别是多少元?(2) 按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】( 1)依据题目给出的条件得出的等量关系是60 座客车每辆每天的租金 -45 座客车每辆每天的租金=200 元,4 辆 60 座一天的租金 +2 辆 45 座的一天的租金 =5 000 元;由此可列出方程组求解;(2 )可依据“我们九年级师生租用 5 辆 60 座和 1 辆 45 座的客车正好坐满”以及(1)的
6、结果来求出答案 .【解答】( 1)设平安公司60 座和 45 座客车每辆每天的租金分别为x 元, y 元.由题意,得xy200,x900,解得4x2 y5000.y700.答:平安客运公司60 座和 45 座的客车每辆每天的租金分别为900 元和 700 元.( 2) 5 900+1 700=5 200元) .答:九年级师生租车一天共需资金5 200 元.【方法归纳】 列方程解决实际问题的解题步骤是:1. 审题:弄清已知量和未知量;2. 列未知数,并依据相等关系列出符合题意的方程;3. 解这个方程;4. 验根并作答:检验方程的根是否符合题意,并写出完整的答.变式练习5. 如图是一个正方体的绽开
7、图,标注了字母“ a”的面是正方体的正面.假如正方体相对两个面上的代数式的值相等,求 x,y 的值 .6. 在某次亚运会中,理想者们手上、脖子上的丝巾特别漂亮.车间 70 名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800 条或者脖子的丝巾1 200 条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应安排多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、挑选题 每道题 3 分,共 30 分1. 以下方程组中,是二元一次方程组的是2xy15x3y3x 5y13xy7A.y z2B.C.y23xxy2D.x2y12. 方程 2x+y=9 的正
8、整数解有 A.1 组B.2 组C.3 组D.4 组3. 方程组3xy2,的最优解法是 3x2 y11A.由得 y=3x-2,再代入B.由得 3x=11-2y,再代入C.由 -,消去 xD.由 2+,消去 y4. 已知x2,是方程组y1axbyaxby4,的解 ,那么 a, b 的值分别为 0A.1,2B.1, -2C.-1,2D.-1,-25. A、B 两地相距 6 km,甲、乙两人从A、B 两地同时动身,如同向而行,甲3 h 可追上乙;如相向而行,1 h 相遇, 求甲、乙两人的速度各是多少?如设甲的速度为x km/h ,乙的速度为y km/h ,就得方程组为 xy6A.3x3y6xy6B.3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 二元 一次 方程组 考点 总结 练习
限制150内