2022年人工智能-BP神经网络算法的简单实现2.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年人工智能-BP神经网络算法的简单实现2.docx》由会员分享,可在线阅读,更多相关《2022年人工智能-BP神经网络算法的简单实现2.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品学习资源人工神经网络是一种仿照人脑结构及其功能的信息处理系统, 能提高人们对信息处理的智能化水平;它是一门新兴的边缘和交叉学科,它在理论、模型、 算法等方面比起以前有了较大的进展,但至今无根本性的突破,仍有很多空白点需要努力探究和讨论;1 人工神经网络讨论背景神经网络的讨论包括神经网络基本理论、网络学习算法、 网络模型以及网络应用等方面;其中比较热门的一个课题就是神经网络学习算法的讨论;近年来己讨论出很多与神经网络模型相对应的神经网络学习算法,这些算法大致可以分为三类: 有监督学习、 无监督学习和增强学习;在理论上和实际应用中都比较成熟的算法有 以下三种:(1) 误差反向传播算法 Back
2、 Propagation,简称 BP 算法 ;(2) 模拟退火算法;(3) 竞争学习算法;目前为止,在训练多层前向神经网络的算法中,BP 算法是最有影响的算法之一;但这种算法存在不少缺点, 诸如收敛速度比较慢, 或者只求得了局部微小点等等;因此,近年来, 国外很多专家对网络算法进行深化讨论,提出了很多改良的方法;主要有:(1) 增加动量法: 在网络权值的调整公式中增加一动量项,该动量项对某一时刻的调整起阻尼作用;它可以在误差曲面显现突然起伏时,减小振荡的趋势,提高网络训练速度;(2) 自适应调剂学习率: 在训练中自适应地转变学习率,使其该大时增大, 该小时减小;使用动态学习率,从而加快算法的收
3、敛速度;(3) 引入陡度因子: 为了提高 BP 算法的收敛速度, 在权值调整进入误差曲面的平整区时,引入陡度因子,设法压缩神经元的净输入,使权值调整脱离平整区;此外, 很多国内的学者也做了不少有关网络算法改良方面的讨论,并把改良的算法运用到实际中,取得了肯定的成果:(1) 王晓敏等提出了一种基于改良的差分进化算法,利用差分进化算法的全局寻优才能,能够快速地得到BP 神经网络的权值,提高算法的速度;(2) 董国君等提出了一种基于随机退火机制的竞争层神经网络学习算法,该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采纳退火技术防止网络收敛到能量函数的局部微小点,从而得到全局最优值;(3)
4、 赵青提出一种分层遗传算法与BP 算法相结合的前馈神经网络学习算法;将分层遗传算法引入到前馈神经网络权值和阈值的早期训练中,再用BP 算法对前期训练所得性能较优的网络权值、 阈值进行二次训练得到最终结果,该混合学习算法能够较快地收敛到全局最优解;欢迎下载精品学习资源(4) 胡洁等提出一种快速且全局收敛的神经网络学习算法,并且对该优化算法的全局收敛性进行分析和具体证明,说明提出的算法比标准的算法效率更高且更精确;尽管国内外的很多学者对BP 算法进行了改良,但这些算法只有在某些特定要求下才有效,并且对网络训练时要加强对网络的监控,网络的结构和参数是要通过多次的试验才能确定, 这些都导致了网络训练时
5、间的增加,降低了网络收敛速度;因此,仍需要进一步讨论神经网络学习算法,提高网络收敛速度,使网络能够更好地应用于实际;2 神经网络基础2.1 人工神经网络概念2.1.1 生物神经元模型生物神经系统是一个有高度组织和相互作用的数量庞大的细胞组织群体;人类大脑的神经细胞大约有 1010 一 10,个;神经细胞也称神经元,是神经系统的基本单元,它们按不同的结合方式构成了复杂的神经网络;通过神经元及其连接的可塑性,使得大脑具有学习、记忆和认知等各种智能; 人工神经网络的讨论动身点是以生物神经元学说为基础的;生物神经元学说认为, 神经细胞即神经元是神经系统中独立的养分和功能单元;其独立性是指每一个神经元均
6、有自己的核和自己的分界线或原生质膜;生物神经系统包括中枢神经系统和大脑,均是由各类神经元组成;生物神经元之间的相互连接让信息传递的部位称为突触SynaPse;突触按其传递信息的不同机制,可分为化学突触和电突触,其中化学突触占大多 数,其神经冲动传递借助于化学递质的作用;神经元是基本的信息处理单元;它主要由树突、轴突和突触组成;其结构大致描述如图1 所示;欢迎下载精品学习资源图 1 生物神经元结构2.1.2 神经网络模型目前人们提出的神经元模型己有很多,其中提出最早且影响最大的是1943 年心理学家McCulloch 和科学家 W.PittS 在分析总结神经元基本特性的基础上第一提出的M 一 P
7、 模型,如图 2 所示,它是大多数神经网络模型的基础;图 2 模型Wji代表神经元 i 与神经元 j 之间的连接强度 模拟生物神经元之间突触连接强度,称之为连接权 ;Ui代表神经元i 的活跃值,即神经元状态; Vi代表神经元j 的输出,即是神经元i 的一个输入 ;欢迎下载精品学习资源 j代表神经元的阀值;函数 f 表达了神经元的输入输出特性;在M-P 模型中, f 定义为阶跳函数 :.= . . = 1,. 00,. 02.1.3 神经网络结构神经网络的网络结构可以归为以下几类:l前馈式网络 :该网络结构是分层排列的,每一层的神经元输出只与下一层神经元连接;2输出反馈的前馈式网络:该网络结构与
8、前馈式网络的不同之处在于这种网络存在着一个从输出层到输入层的反馈回路;3) 前馈式内层互连网络 :该网络结构中, 同一层之间存在着相互关联,神经元之间有相互的制约关系, 但从层与层之间的关系来看仍旧是前馈式的网络结构,很多自组织神经网络大多具有这种结构;4) 反馈型全互连网络:在该网络中, 每个神经元的输出都和其他神经元相连,从而形成了动态的反馈关系,该网络结构具有关于能量函数的自寻优才能;5) 反馈型局部互连网络:该网络中,每个神经元只和其四周假设干层的神经元发生互连关系,形成局部反馈,从整体上看是一种网状结构;2.1.4 神经网络的学习神经网络的学习也称为训练, 指的是通过神经网络所在环境
9、的刺激作用调整神经网络的自由参数, 使神经网络以一种新的方式对外部环境做出反应的一个过程;能够从环境中学习和在学习中提高自身性能是神经网络的最有意义的性质;神经网络经过反复学习对其环境更为明白; 学习算法是指针对学习问题的明确规章集合;学习类型是由参数变化发生的形式决 定的,不同的学习算法对神经元的突触权值调整的表达式有所不同;2.2 BP 神经网络2.2.1 Bp 神经网络的定义、特点及应用采纳误差反向传播算法Bp:ErrorBack 一 propagationAlgorithm 的多层前馈人工神经网络或称多层感知器, MLP :Multiuyerperceptron 称为 Bp 神经网络或
10、 BP 神经网络模型; BP 神经网络具有明显的特点:l分布式的信息储备方式神经网络是以各个处理器本身的状态和它们之间的连接形式储备信息的,一个信息不是储备在一个地方,而是按内容分布在整个网络上;网络上某一处不是只储备一个外部信息,而是储备了多个信息的部分内容;整个网络对多个信息加工后才储备到网络各处,因此, 它欢迎下载精品学习资源是一种分布式储备方式;2) 大规模并行处理BP 神经网络信息的储备与处理运算是合二为一的, 即信息的储备表达在神经元互连的分布上,并以大规模并行分布方式处理为主,比串行离散符号处理的现代数字电脑优越;3) 自学习和自适应性BP 神经网络各层直接的连接权值具有肯定的可
11、调性,网络可以通过训练和学习来确定网络的权值,出现出很强的对环境的自适应和对外界事物的自学习才能;4) 较强的鲁棒性和容错性BP 神经网络分布式的信息储备方式,使其具有较强的容错性和联想记忆功能,这样假如某一部分的信息丢失或损坏,网络仍能复原出原先完整的信息,系统仍能运行;2.2.2 BP神经网络结构BP 神经网络通常由输入层、隐含层和输出层组成,层与层之间全互连,每层节点之间不相连; 它的输入层节点的个数通常取输入向量的维数,输出层节点的个数通常取输出向量的维数,隐层节点个数目前尚无确定的标准,需通过反复试凑的方法,然后得到最终结果;依据 Kolmogor ;、定瑾, 具有一个隐层 隐层节点
12、足够多 的三层 BP神经网络能在闭集上以任意精度靠近任意非线性连续函数;BP 网络是一种多层前馈神经网络, 由输入层、 隐层和输出层组成;层与层之间采纳全互连方式 , 同一层之间不存在相互连接, 隐层可以有一个或多个;构造一个 BP 网络需要确定其处理单元神经元的特性和网络的拓扑结构;神经元是神经网络最基本的处理单元 , 隐层中的神经元采纳S 型变换函数 , 输出层的神经元可采纳S 型或线性型变换函数;图 1 为一个典型的三层BP 网络的拓扑结构;神经网络学习采纳改良BP 算法 , 学习过程由前向运算过程和误差反向传播过程组成;在前向运算过程中 , 输入信息从输入层经隐层逐层运算, 并传向输出
13、层 , 每层神经元的状态只影响下一层神经元的状态; 如输出层不能得到期望的输出 , 就转入误差反向传播过程 , 误差信号沿原先的连接通路返回 , 通过修改各层的神经元的权值 , 使得网络系统误差最小; 最终网络的实际输出与各自所对应的期望输出靠近;3 MATLAB6.1 神经网络工具箱及其相关函数简介BP 神经网络设计时, 需要确定网络的拓扑结构隐层的层数及各层的神经元的数目及其神经元的变换函数,网络的初始化 , 误差运算 , 学习规章及网络训练, 训练参数及训练样本的归一化处理等方面的工作, 在 MATLAB6.1 神经网络工具箱中, 有对应的函数完成所涉及到的全部运算任务;欢迎下载精品学习
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 人工智能 BP 神经网络 算法 简单 实现
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内