2022年二项式定理教学设计3.docx
《2022年二项式定理教学设计3.docx》由会员分享,可在线阅读,更多相关《2022年二项式定理教学设计3.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品学习资源二项式定理教案设计(贵州省试验中学席志涛)一教案内容及其解读二项式定理是带领我们进入微积分领域大门的一把金钥匙,只是在中学没有显示的机会;本节学问类型属于概念型熟识,将本节内容放在计数原理之后来学习,一方面是由于二项式定理证明要用到计数原理,另一方面也是学习随机变量及其分布列的预备;二项式定理支配在高中数学排列组合内容后的一部分内容,其形成过程是计数原理、组合学问的应用,同时也是自成体系的学问块,它是二项绽开式与多项式乘法有亲密的联系,本节学问的学习,必定从更广的视角和更高的层次来注视中学学习的关于多项式变形的学问;运用二项式定理可以解决一些比较典型的数学问题,例如近似运算、整除问
2、题、不等式的证明等;二教案目标及其解读(一)目标欢迎下载精品学习资源1、能用计数原理分析ab 2 的绽开式;捕获二项式绽开式各项的系数的组合欢迎下载精品学习资源欢迎下载精品学习资源规律;2. 会用类比、合情推理的方法讨论ab 3 , ab 4 , anb二项式绽开式问欢迎下载精品学习资源欢迎下载精品学习资源题;3. 同学会主动 观看 项以 及系 数的变化规律、 类比 ab 3 , ab 4 、 猜想欢迎下载精品学习资源nab、归纳二项式的才能;(二)目标解读1、将二项式绽开式与计数原理联系在一起并不简洁,所以通过小桶去球的情形欢迎下载精品学习资源铺设两者的对接的桥梁,实现对ab 2 的绽开式”
3、的深化探究,最终摸索出欢迎下载精品学习资源nnab的绽开式的规律,并能用自己的语言说出ab的绽开式的项数、各项次数及绽开式中各项系数的特点,体验从特殊到一般的规律摸索方法;34n2、培育同学类比归纳的合情推理在本节课指的是同学能从取球的例题从迁移到欢迎下载精品学习资源2a b, ab , ab的绽开式,从而归纳ab的绽开式;欢迎下载精品学习资源三学情分析1. 依据同学的实际情形,同学已有的基础是计数原理、排列组合相关学问, 但教案中遇到的第一个困难就是同学不能主动运用计数原理分析二项式的绽开式;要解决这一问题,在教案中设计一个同学熟识的取球的例子;然后引导学欢迎下载精品学习资源生用解决上述问题
4、的方法写出2ab的绽开式,突出计数原理在解决二项式展欢迎下载精品学习资源开式可以起到的作用;2. 同学已有基础多项式相承运算法就,但教案中可能遇到的又一困难就是学 生不能发觉系数用组合数表示的规律;课堂教案中,关键是考察同学是否懂得 “完成一件事”是什么?如何完成这件事情?,要完成这件事可以分成两步完 成:第一步取足够的 a ,其次步取相应个数的 b ;同时也要留意到教材中“由于b 选定后, a 的选法也随之确定”这句话对懂得取b 计数的重要性,当然也应当留给同学足够的时间去分析摸索;老师依据详细情形进行适当的引导;四、教案策略分析:1001、通过数学模型的引入,帮忙同学复习预备学问,完成学与
5、较的现实动身;欢迎下载精品学习资源2、同学习惯使用多项式乘积绽开ab 3 ,特殊提出绽开ab,促使同学向新欢迎下载精品学习资源方法转向;3、环绕重点设计问题串,“绽开式中同类项的形式是怎样的?每一类型的项的个数如何计欢迎下载精品学习资源算?引导同学深化摸索问题的本质;四教案重点:探究并归纳用计数原理分析2a b, a3b , a4b的绽开式的形成过程,欢迎下载精品学习资源并依此方法得到二项式定理 五教案难点:1、绽开式中会有哪几种类型的项?232、绽开式中各项的系数如何确定? 本节课的教案流程:欢迎下载精品学习资源取球例题分析 ab的绽开式分析 ab的绽开式欢迎下载精品学习资源欢迎下载精品学习
6、资源分析 abn 绽开式 解决二项式绽开式问题欢迎下载精品学习资源六、教案技术开发与利用:智能网络教案平台欢迎下载精品学习资源本节课借助本校智能网络教案平台,参加同学自主探究、课堂练习过程,一方 面,可以快速捕获同学学习中的问题.,准时明白同学对学问把握的情形;另一方面,可以高效的展现同学的学习成果,更好的为同学树立学习数学的爱好; 七教案环节:(一)创设情境引入新课:问题:有两个小桶装有大小相同,质地相同的a、b 两小球;在每个桶中各取一个小球,共有几种不同的取法?枚举法:共有 aa、ab、ba、bb 等 4 种不同的取法;分步计数原理:第一步,第一次取球有2 种方法;其次步,其次次取球有2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 二项式 定理 教学 设计
限制150内