2022年eviews图像及结果分析.pdf
《2022年eviews图像及结果分析.pdf》由会员分享,可在线阅读,更多相关《2022年eviews图像及结果分析.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、eviews 图像及结果分析第4章图形与统计量分析EViews 软件提供了序列 (Series)与序列组 (Group)等对象的各种视图、统计分析方法与过程。 当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。本章将介绍序列与序列组对象图形的生成与描述性统计量及其检验。4、1 图 形 对 象图形 (Graph)对象可以形成序列与序列组等对象的各种视图,如线图 (Line) 、散点图(Scatter)以及饼图 (Pie)等。通过图形可以进一步观察与分析数据的变化趋势与规律。下面介绍图形对象的基本操作。4、1、1 图形(Graph)对象的生成图形对象
2、也就是工作文件中的基本对象之一。要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View ”|“Graph”选项。选择的对象类型不同 ,将弹出不同的窗口。如果在序列对象窗口下选择“View”|“Graph”选项 ,将弹出如图4-1 所示的界面。图 4-1 序列窗口下图形对象的生成此时“ Graph”弹出的菜单中有6 种图形可供选择。“Line”表示生成的就是折线图,如图 4-2 所示 ,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。“Area”表精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - -
3、- - - - - - -第 1 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析示生成面积图,其图形的形状与“Line”(折线图 )相同 ,不同的就是“ Area”(面积图 )曲线下方就是被填满的,而“ Line”(折线图 )下方就是空白。图 4-2 “Line”折线图“Bar”表示为条形图 ,用条状的高度表示观测值的大小。“Spike”表示尖峰图 ,由竖线组成 ,每根竖线的高度代表观测值的大小。“Seasonal Stacked Line ”表示生成的就是季节性堆叠图 ,“Seasonal Split Line”表示生成的就是季节性分割线。如果在序列组
4、 (群)对象窗口下选择“View ”|“Graph”选项 ,将弹出如图4-3 所示的界面。这里有9种图形可供选择。其前4 种与上面讲述的相同。图 4-3 序列组 (群)窗口下图对象的生成其中 ,“ Scatter” 表示生成散点图。在“Scatter”弹出的菜单中有5 个选项 ,分别就是“Simple Scatter”(简单散点图 )、 “Scatter with Regression” (带有回归线的散点图)、 “Scatter with Nearest Neighbor Fit ”(近邻匹配散点图 )、“Scatter with Kernel Fit ”(核心匹配散点图 )、“XY Pai
5、rs”(XY 成对散点图 )。当序列组中包含两个序列对象时,第一个序列对象的观测值精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析构成散点图的横坐标,第二个序列对象的观测值构成散点图的纵坐标,如图 4-4 所示。当序列组中有三个以上的序列对象时,第一个序列对象构成散点图的横坐标,其余序列对象构成散点图的纵坐标。图 4-4 简单散点图 (“Simple Scatter”) “XY line ”表示 X 与 Y 的折线图
6、 ,横纵坐标分别表示两个序列对象的观测值。“Error Bar”表示误差长条图,“High-Low ”表示高低图 ,“Pie”表示饼图。另外 , 在序列组 ( 群) 对象窗口下还可通过选择“View”|“Multiple Graphs”选项来生成图形。此时图形显示在不同的坐标系中,即每个序列对象各形成一个图形, 并显示在同一个窗口中。除上面介绍的在序列对象窗口中生成图对象外,还可以通过选择EViews 主菜单中的“Quick”|“Graph”选项来生成。在“Graph”的菜单中选择图的类型,将弹出图4-5 所示的文本框。在文本框内输入序列或序列组的名称,例如“fdi”,然后单击“ OK ”按钮
7、,即可打开相应的图。此时所生成的图对象未被命名,单击图对象窗口中的“Name”按钮即可命名。图 4-5 生成图对象的文本框4、1、2 图形的冻结在上面所介绍的两种图对象生成方法中,通过“ Quick”|“Graph”选项生成图形对象,单击图对象窗口工具栏中的“Name” 选项,在弹出的对话框中输入该对象的名称,单击“OK ”精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析按钮后该对象即可被保存,并在工作文件窗口中显示
8、图对象的图标。 但直接在序列对象窗口中形成的图形未被保存,当序列对象中的观测值发生改变时,或当前工作文件的样本范围发生变化时 ,图形也将随之改变。如果要保留所建立的图形,使之不随样本及观测值的改变而发生变化,则可以通过序列对象窗口中的“ Freeze”键来冻结图形。 EViews 软件将被冻结的图形以一个图(Graph)对象的形式保存在工作文件中。当选择序列对象窗口中的“Freeze ”键时 ,会弹出图对象窗口。其中有几个键值得关注,一个就是 “AddText ”功能键 ,通过它可以将文字显示在图形中,并且可以选择显示的位置。一个就是“Line/Shade”功能键 ,通过它可以改变图形的背景颜
9、色,横纵坐标轴的线条类型与颜色等。还有一个就是“Remove”功能键 ,可以用来删除图形中的一些附加要素。例如,将在图形中所建立的文字删除,应首先用鼠标单击所需删除的内容,使其被选中 ,然后单击“ Remove”键,则文字即被删除。用同样的方法也可以删除为图形所设置的颜色等。4、1、3 图形的复制如果需要将图形保存到其她文件中,例如放在Word 文档中 ,则选择图对象窗口中的“Proc”|“Copy”选项 ,然后在弹出的对话框中单击“OK”按钮。或者将鼠标移动到图形上,右击 ,在弹出的快捷菜单中选择“Copy”命令。再打开需要粘贴的文件,进行粘贴即可。4、2 描述性统计量EViews 软件中包
10、含一些基本的描述性统计量,有直方图、均值、方差、协方差、自相关等。本节主要介绍序列与序列组对象窗口下的描述性统计量及其检验。4、2、1 描述性统计量概述序列窗口下的描述性统计量与序列组窗口下的描述性统计量有所不同。在序列窗口下有 4 种描述性统计量,分别就是“Histogram and Stats”(直方图与统计量)、“Stats Table”(统计表 )、“ Stats by Classification”(分类统计量 )与“ Boxplots by Classification ”(箱线图 /箱尾图分类 )。序列组窗口下有3 种描述性统计量 ,分别就是“ Common Sample”(普通
11、样本 )、“Individual Samples ”(个体样本 )与“Boxplots”(箱线图 /箱尾图 )。下面分别进行详细介绍。(1) 序列窗口下的描述性统计量在序列 (Series)对象窗口下选择工具栏中的“View ”|“Descriptive Statistics”(描述性统计量 )选项 ,将出现 4 个选项。第一个选项就是“Histogram and Stats”(直方图与统计量 ),能显示序列对象的直方图与描述性统计量的值。下面以建立好的序列对象“fdi ”为例来进行说明。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - -
12、 - - - - - - -第 4 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析如图 4-6 所示 ,图的左侧显示的就是该序列对象的直方图,为观测值的频率分布。 右侧分三个部分 ,最上面显示的就是序列对象的名称、样本的范围与样本数量。中间部分显示的就是各统计量的值。其中,“Mean”表示均值 ,即序列对象观测值的平均值;“Median”表示中位数 ,即从小到大排列的序列对象观测值的中间值,就是对序列分布中心的一个大致估计;“Maximum ”与“ Minimum ”表示的就是该序列观测值中的最大值与最小值;“Std、Dev”表示标准差 ,用来衡量序列观
13、测值的离散程度。其计算公式为NixxNi1)(112(4-1)式中 ,为标准差 ,N 为样本观测值个数,xi就是样本观测值 ,x为样本均值。图 4-6 序列对象“ fdi”的直方图分布形状与相关统计量的描述“Skewness”表示偏度 ,用来衡量观测值分布偏离均值的状况。其计算公式为31?1NixxNSi(4-2)式中 ,?就是变量方差的有偏估计。当S=0 时,序列的分布就是对称的,如正态分布 ;当S 0 时,序列分布为右偏 ;当 S 0,所以我国的外商直接投资(fdi) 的分布就是不对称的,为右偏分布形态。“Kurtosis”表示峰度 ,用来衡量序列分布的凸起状况。其计算公式为41?1Nix
14、xNKi(4-3)正态分布的K 值为 3,当 K 3 时,序列对象的分布凸起程度大于正态分布的凸起程度;当 K 3,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析外商直接投资 (fdi) 的分布呈尖峰状态。最下方就是JB(Jarque-Bera)统计量及其相应的概率(Probability)。JB 统计量用来检验序列观测值就是否服从正态分布,该检验的零假设为样本服从正态分布。在零假设下,JB 统计量服从 2(2)分
15、布。根据第1 章所介绍的假设检验,P(Probability) 值为拒绝原假设所犯第类错误的概率。在本例中P 值接近于 0,因而可在 1%的显著性水平下拒绝零假设,即序列不服从正态分布。第二个选项就是 “Stats Table”(统计表 ),它将描述性统计量值通过电子表格的形式显示在对象窗口中。第三个选项就是“Stats by Classification ”(分类统计量 ),它将样本分为若干组后再对各组观测值分别进行描述统计。选择此项后将弹出如图4-7 所示的对话框 ,其中包括三部分内容。在左边“Statistics”选项中勾选需要显示的统计量,其中“ # of NAs”为无观测个数,“Ob
16、servations”为观测值个数。在“Series/Group for classify”中输入需分类的序列或序列组对象名称 ,右侧“ Output Layout ”为输出结果的显示形式。选择好后单击“OK”按钮即可。图 4-7 “Stats by Classification”(分类统计量 )对话框第四个选项就是“Boxplots by Classification ”(分类箱线图 /箱尾图 ),将序列分布按照箱线图 /箱尾图进行分类。 箱线图 (Boxplot) 也称为箱尾图 ,就是利用数据统计量来描述数据的一种方法 ,它可以粗略地瞧出数据就是否具有对称性,分布的分散程度等。 图 4-8
17、 所示为 fdi 序列的分类箱线图。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析图 4-8 fdi 序列对象的分类箱线图(“Boxplots by Classification”) (2) 序列组窗口下的描述性统计量在序列组 (Group)对象窗口下选择工具栏中的“View”| “Descriptive Statistics”( 描述性统计量 )选项 , 将弹出 3 个选项。第一个选项就是“Common Samp
18、le”(普通样本 ),选择该项将得到含有均值、中位数、最大 /小值等统计量的一张电子表格。“Common Sample”要求各序列对象的样本范围相同,不能含有 NA 符(空值 )。第二个选项就是“Individual Samples”(个体样本 ),选择该项后弹出的界面也就是含有均值、中位数、最大/小值等统计量的一张电子表格。与“Common Sample”不同的就是 ,该选项中序列对象所包含的观测值个数可以不同。第三个选项就是“Boxplots”(箱线图 /箱尾图 ),其生成的图形与图4-8 相似。不同的就是横坐标轴为序列名称。其实 ,序列对象与序列组对象的描述统计量相同,只就是在窗口中显示
19、的形式不同。序列组对象窗口中的描述性统计量就是各个序列对象统计量的组合。4、2、2 描述性统计量检验在序列对象窗口“View ”|“Tests for Descriptive Stats”中有两个关于描述性统计量的检验 ,一个就是“ Simple Hypothesis Tests”(简单假设检验 ),另一个就是“ Equality Tests by Classification”(分组齐性检验 )。简单假设检验(“ Simple Hypothesis Tests”)包括序列对象的均值(Mean)检验、方差(Variance)检验与中位数 (Median)检验。选择 “View ” | “Tes
20、ts for Descriptive Stats”| “Simple Hypothesis Tests”选项后弹出图4-9 所示的对话框 ,在左侧文本框中输入待检验的数值,然后单击“OK”按钮即可得到输出结果。对于均值检验 ,如果标准差已知 ,可在右侧 “Enter s、d、精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析if”文本框中输入标准差的值。图 4-9 fdi 序列对象的简单假设检验对话框均值 (Mean)
21、检验、方差 (Variance)检验与中位数 (Median)检验的零假设与备择假设均为H0: =m(给定的数值 ) H1:m根据输出结果中的P 值来判定就是否接受原假设。例如,如果 P 值小于 0、05,说明在5%的显著性水平下可以拒绝零假设,即均值、方差或者中位数不等于给定值。分组齐性检验(“ Equality Tests by Classification”)同样包括均值(Mean)检验、方差(Variance)检验与中位数 (Median)检验。选择 “View ” | “Tests for Descriptive Stats” | “Equality Tests by Classif
22、ication ”选项后弹出图4-10 所示的对话框 ,在“Series/Group for classify ”文本框中输入序列或序列组对象名称,在“Test equality of”中选中检验方法,“NA handling ”表示缺值项的处理方法, “Group into bins if ” 可以限定分类后子项目的数目。然后单击“OK ”按钮即可。在序列组对象窗口中选择“View ”| “Tests for Descriptive Stats”选项,会弹出如图 4-11所示的对话框 ,其中包括均值 (Mean)检验、中位数 (Median)检验与方差 (Variance)检验,其检验方法与
23、上面介绍的序列对象中的检验方法相同。选中一种检验后单击 “OK ”按钮即可。 当选中“ Common sample”复选框时 ,要求每个序列对象的当前样本范围内的观测值数目相同(不含 NA), 否则样本观测值数目可以不同。图 4-10 fdi 序列对象的分组齐性检验对话框图 4-11 序列组对象检验对话框实验 04-01: 表 4-1 中列出了 2003 年 1 月到 2005年 12 月中国对法国地区的进出口贸易总额 ,单位为万美元。请建立新序列对象保存该数据并进行简单假设检验。表 4-1 2003、12005、12 中国对法国地区的进出口贸易总额精品资料 - - - 欢迎下载 - - -
24、- - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 17 页 - - - - - - - - - - eviews 图像及结果分析日期进出口贸易总额日期进出口贸易总额日期进出口贸易总额2003、1 86 082 2004、1 112 976 2005、1 148 958 2003、2 152 372 2004、2 221 297 2005、2 276 944 2003、3 244 255 2004、3 357 870 2005、3 430 414 2003、4 353 458 2004、4 504 991 2005、4 633 763 20
25、03、5 463 705 2004、5 645 355 2005、5 786 491 2003、6 566 547 2004、6 786 018 2005、6 960 340 2003、7 679 596 2004、7 948 604 2005、7 1 143 355 2003、8 806 437 2004、8 1 116 051 2005、8 1 328 490 2003、9 943 756 2004、9 1 288 049 2005、9 1 505 906 2003、10 1 053 142 2004、10 1 420 179 2005、10 1 664 454 2003、11 1 197
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 eviews 图像 结果 分析
限制150内