2022年光纤通信-重要知识点总结教学文案 .docx
《2022年光纤通信-重要知识点总结教学文案 .docx》由会员分享,可在线阅读,更多相关《2022年光纤通信-重要知识点总结教学文案 .docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、光纤通信 重要学问点总结第一章1. 任何通信系统追求的最终技术目标都是要牢靠地实现最大可能的信息传输容量和传输距离;通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽;2. 光纤:由绝缘的石英( SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范畴内获得很小的损耗;3. 光纤通信系统的基本组成: 以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成;光纤通信系统既可传输数字信号也可传输模拟信号;输入到光发射机的带有信息的电信号,通过调制转换为光信号;光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号;系统中
2、光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤;光发送机一般由驱动电路、光源和调制器构成,假如是直接强度调制,可以省去调制器;光接收机的作用是将光纤送来的光信号仍原成原始的电信号;它一般由光电检测器和解调器组成;光纤的作 用是为光信号的传送供应传送媒介,将光信号由一处送到另一处;中继器分为电中继器和光中继器(光放大 器)两种,其主要作用就是延长光信号的传输距离;为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最终把这种已调信号输入光发射机;仍可以采纳频分复用技术,用来自 不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频
3、电波,然后把多个这种 带有信息的 RF 信号组合成多路宽带信号,最终输入光发射机,由光载波进行传输;在这个过程中,受调制的RF电波称为副载波,这种采纳频分复用的多路电视传输技术,称为副载波复用技术;目前大都采纳强度调制与直接检波方式;又由于目前的光源器件与光接收器件的非线性比较严峻,所以对光器件的线性度要求比较 低的数字光纤通信在光纤通信中占据主要位置;数字光纤通信系统基本上由光发送机、光纤与光接收机组成;发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,就 LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“ 0”
4、时,光源器件发送一个“空号”;光波经低衰耗光纤传输后到达接收端; 在接收端, 光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,复原成原先的信息;这样就完成了一次通信的全过程;4. 光纤通信的优点:1 通信容量大 , 一根仅头发丝粗细的光纤可同时传输1000 亿个话路 2 中继距离长 , 光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上, 因此光纤通信特殊适用于长途一、二级干线通信;3. 保密性能好 4. 适应才能强 5. 体积小、重量轻、便于施工保护6. 原材料资源丰富,节省有色金属和能源,潜在价格低廉, 制造石英光纤的原材料是二氧化硅(
5、砂子),而砂子在自然界中几乎是取之不尽、用之不竭的5. 光发射机 : 功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路;光发射机由光源、驱动器和调制器组成;光源是光发射机的核心;光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳固,器件寿命长;6. 实现光源调制的方法: 直接调制和外调制; 直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的;这种方案技术简洁,成本较低,简洁实现,但调制速率受激光器的频率特性所限制;外调制是把激光的产生和调制分开,
6、用独立的调制器调制激光器的输出光而实现的;外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用;6. 光纤线路 : 光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机;光纤线路由光纤、光纤接头和光纤连接器组成;光纤是光纤线路的主体,接头和连接器是不行缺少的器件;光纤线路的性能主要由缆内光纤的传输特性打算;对光纤的基本要求是损耗和色散这两个传输特性参数都尽可能地小,而且有足够好的机械特性和环境特性;7. 石英光纤在近红外波段,其损耗随波长的增大而减小,在0.85 m、1.31 m 和 1.55 m有 3 个损耗很小
7、的波长窗口;在这3 个波长的窗口损耗分别小于2dB/km、0.4dB/km 和 0.2dB/km ;8. 光接收机 : 功能是把从光纤线路输出、产生畸变和衰减的柔弱光信号转换为电信号,并经放大和处理后复原成发射前的电信号;光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心,对光检测器的要求是响应度高、噪声低和响应速度快;光检测器类型: 在半导体 PN结中加入本征层的PIN 光敏二极管和雪崩光敏二极管;光接收机把光信号转换为电信号的过程,是通过光检测器的检测实现的;检测方式有直接检测和外差检测两种;直接检测是用检测器直接把光信号转换为电信号;这种检测方式设备简洁、经济有用,是当前
8、光纤通信系统普遍采纳的方式;外差检测要设置一个本地振荡器和一个光混频器,使本地振荡光和光纤输出的信号光在混频器中产生差拍而输出中频光信号,再由光检测器把中频光信号转换为电信号;难点是需要频率特别稳固、相位和偏振方向可掌握,以及谱线宽度很窄的单模激光源,优点是有很高的接收灵敏度;光接收机最重要的特性参数是灵敏度;灵敏度是衡量光接收机质量的综合指标,它反映接收机调整到正确状态时,接收柔弱光信号的才能;灵敏度主要取决于组成光接收机的光敏二极管和放大器的噪声,并受传输速率、光发射机的参数和光纤线路的色散的影响,仍与系统要求的误码率或信噪比有亲密关系;9. 空间光通信与传统的微波通信相比,其显著的优点为
9、:1 通信容量大; 2 体积小; 3 功耗低; 4 建造经费和保护经费低;10. 空间光通信是指在两个或多个终端之间,利用在空间传输的激光束作为信息载体,实现通信,空间光通信关键技术 :1 激光器技术对激光波长的讨论主要集中在800nm、1000nm及 1550nm三个波段,与以上三种波长对应的半导体激光器、固体激光器和光纤激光器;2. 捕捉、瞄准、跟踪技术3. 调制、接收技术 , 调制方式分为调幅、调频、调相, 接收直接强度探测 , 即非相干探测具有结构简洁、成本低、易实现等优点;相干(外差)探测这种方法具有接收灵敏度高、抗干扰才能强等优点,但系统较为复杂,对元器件性能要求较高,特殊是对波长
10、的稳固性和谱线宽度要求较高11. 光通信链路功率设计原就主要是保证在所要求的参数(通信距离、系统码率及误码率)条件下,光接收端机探测器上接收到的最小功率Prmin 大于接收机警敏度的要求;其次章1. 光源是光发射机的主要器件,主要功能是实现信号的电光转换, 作用是将电数字脉冲信号转换为光数字脉冲信号并将此信号送入光纤线路进行传送;光检测器位于光接收机内,主要功能是实现信号的光电转换,2. 光源性能的基本要求与类型 :1 发光波长与光纤的低衰减窗口相符 2 足够的光输出功率 3 牢靠性高、寿命长 4 温度稳固性好 5 光谱宽度窄 , 由于光纤有色散特性, 使较高速率信号的传输距离受到肯定限制;
11、如光源谱线窄,就在同样条件下的无中继传输距离就长; 6 调制特性好 7 与光纤的耦合效率高 8 尺寸小、重量轻3. 光源的类型 : 光纤通信光源分为半导体激光器( LD)和发光二极管( LED);半导体光源优点是其工作波长可以对准光纤的低损耗、低色散窗口,仍具有体积小、功耗低、易于实现内调制等特点,特殊适用于光纤通信;缺点,包括输出功率小、热稳固性差、远场发散角 大 指半导体光源发出的激光功率不够集中,大致分布在 30左右的立体角内,因而有相当一部分光功率不能耦合进光纤,这一部分丢失的光功率就是“入纤损耗”的主要机理; 半导体光源的输出功率小和入纤损耗大,限制了通信的无再生距离;热稳固性差,环
12、境温度超过 40时应有监测和告警;发光二极管分为边发光、面发光和超辐射三种结构;同一波长的LD 和LED采纳相同组成的有源层(即发光层),它们的区分在于结构和工作原理不同;LD 的输出功率大,入纤耦合效率高,但稳固性较差;而LED的输出功率小,耦合损耗也较大,但稳固性好,寿命几乎不成问题,价格也较 LD 廉价;一般长途干线使用LD 作光源,短距离的本地网发送机选用LED;-234. 半导体光源 : 半导件激光器是向半导体PN结注入电流,实现粒子数的反转分布,产生受激辐射,再 利用谐振腔的正反馈,实现光放大而产生激光. 绝大部分粒子处于基态,只有较少数的粒子被激发到高能级, 且能级越高,处于该能
13、级的粒子数越小;k 0=1.38 10J/K , k0 为玻耳兹曼常数 . 电子在原子核外的跃迁有三种基本方式:自发辐射、受激辐射和受激吸取. 受激辐射是受激吸取的逆过程;电子在E1 和 E2 两个能级之间跃迁,吸取的光子能量或辐射的光子能量都要满意玻尔条件,即E2-E 1=hf 1212h 为普朗克常数, h=6.626 10-34 Js; f为吸取或辐射的光子频率;5. 粒子反转分布 : 产生受激辐射和产生受激吸取的物质是不同的;设在单位物质中,处于低能级和处-23于高能级的粒子数分别为N1 和 N2 ;当系统处于热平稳状态时,存在分布k 0 为玻尔兹曼常数, k0=1.38 10J/K
14、;T 为热力学温度;由于( E2 -E1)0,T0,总有 N1N2;这是由于电子总是第一占据低能量 的轨道;受激吸取和受激辐射的速率分别比例于N1 和 N2 且比例系数相等;假如N1 N2,即受激吸取大于受激辐射;当光通过这种物质时,光强按指数衰减,这种物质称为吸取物质;通常情形下,粒子具有正常能级分布,总是低能级上的粒子数比高能级上的粒子数多;所以光的受激吸取比受激辐射强, 因此光总是受到衰减; 要想获得光的放大, 必需使受激辐射强于受激吸取;也就是说, 使 N2 N1, 当光通过这种物质时,会产生放大作用,这种物质称为激活物质;N2 N1 的分布和正常状态( N2 N1)的分布相反,所以称
15、为 粒子数反转分布 ;处于粒子数反转分布的物质称为激活物质或增益物质;要想得到粒子数反转分布,一般采纳光鼓励、放电鼓励、化学鼓励等方法,给物质能量,以求把低能级的粒子激发到高能级上去,这个过程叫泵浦;13. 光源与光纤的耦合 : 光源和光纤耦合的程度 , 可以用耦合效率来衡量,它的定义为 =PF/Ps. PF 为耦合入光纤的光功率; Ps 为光源发射的光功率; 的大小取决于光源和光纤的类型, LED和单模光纤的耦合效率较低, LD 和单模光纤的耦合效率更低;影响光源与光纤耦合效率的主要因素是光源的发散角和光纤的数值孔径NA;发散角越大,耦合效率越低;数值孔径越大,耦合效率越高;此外,光源的发光
16、面、光纤端面尺寸、外形以及二者间距都会直接影响耦合效率;14 通常有两种方法来实现光源与光纤的耦合,即直接耦合和透镜耦合;直接耦合就是将光纤端面直 接对准光源发光面,这种方法当发光面积大于纤芯时是一种有效的方法;直接耦合结构简洁,但耦合效率低;面发光二极管与光纤的耦合效率只有2% 4%;半导体激光器的光束发散角比面发光二极管小得多,与光纤的耦合效率约为 10;6. 激光振荡和光学谐振腔: 粒子数反转分布是产生受激辐射的必要条件,但仍不能产生激光;只有把激活物质置于光学谐振腔中,对光的频率和方向进行挑选,才能获得连续的光放大和激光振荡输出. 激活物质和光学谐振腔只是为激光的产生供应了必要的条件;
17、为了获得激光振荡,仍必需满意肯定的阈值条件和相位条件 .阈值条件 ; 设增益介质单位长度的小信号增益系数为G0,损耗系数为 i ,两个反射镜M1、M2反射系数分别为 r1 和 r2 ;由于增益介质的放大作用,腔内光功率随距离的变化可表示为P( 0)为z=0 处的光功率;光束在腔内经受一个来回后,两次通过增益介质,此时的光功率为要想产生振荡,必需满意P(2L) P( 0)因此:. 称为光学谐振腔的平均损耗系数,它包括增益介质的本身损耗和通过两次反射镜的传输损耗;只有在这种情形下,光信号才能不断得到放大,使输出光功率逐步增强;高能级粒子不断向低能级跃迁产生受激辐射,使得低能级粒子数和高能级粒子数差
18、减小,受激辐射作用降低,增益系数 G0 也减小,直至 G0=,激光器保护一个稳固的振荡,并输出稳固的光功率;相位条件要产生激光振荡,除了要满意上述阈值条件外,仍要满意肯定的相位条件,即受激辐射光在腔内来回一次后与原有的波叠加;如要在腔中形成谐振,叠加的波必需是相互加强的,即要求它们之间的相位差必需是2 的整数倍,也就是来回一次的路径长度是波长的整数倍,以形成正反馈;这可写成 2L=q 式中, q 表示纵模的模数;为在谐振腔内的光波波长; 光学谐振腔的折射率为 n,就输出的激光波长是谐振腔内波长的 n 倍;输出激光波长为=2nL/q , 为输出的激光波长; n 为激活物质的折射率; q 为纵模模
19、数, q=1, 2,3;7. 激光器产生激光必需具备以下几个条件: 1)必需有激光工作物质,可在需要的光波范畴内辐射光子; 2)工作物质必需处于粒子数反转分布状态,并使小信号增益系数大于谐振腔的平均损耗系数,从而产生光的放大系数; 3)必需有光学谐振腔进行频率挑选及产生光反馈;8. 半导体激光器的发光波长半导体发光器件所采纳的半导体材料,依据不同的组合,其发光8波长从可见光到红外光区域;发光波长基本上由半导体禁带宽度(即导带与价带的能级差)Eg hf 打算;由=C/f 得出 =hc/Eg,其中 c 为光速 c 2.99792458 10 m/s ;光子能量 E和波长之间的变换关系为EeV1.2
20、398/ m9. 半导体激光器工作特性: 1.P-I特性: 当激光器注入电流增加时,受激发射量增加,一旦超过P-N结中光的吸取损耗,激光器就开头振荡,于是光输出功率急剧增大;使激光器发生振荡时的电流称为阈值电流 Ith ;只有当注入电流等于或大于阈值时,激光器才发射激光;2. 微重量子效率 d 激光器输出光子数的增量与注入电子数的增量之比,定义为微重量子效率 3. 光谱特性,光源谱线宽度是衡量器件发光单色性的一个物理量;越窄越好;4. 温度特性10 其他激光器:分布反馈式激光器,DFB 激光器采纳双异质掩埋条形结构;不同之处是它用布拉格光栅取代传统的 F-P 光腔作为光谐振器; 量子阱激光器
21、MQW多 量子阱结构带来了阈值电流小、输出光功率大及热稳固性好的优点;光纤锁模激光器, 产生激光超短脉冲的技术常称为锁模技术;垂直腔面发射激光器11. 发光二极管 : 发光二极管( LED)的工作原理与激光器(LD)有所不同, LD 发射的是受激辐射光, LED发射的是自发辐射光;LED的结构和 LD 相像,大多采纳双异质结(DH)芯片,把有源层夹在P 型和 N 型限制层中间,不同的是LED不需要光学谐振腔,没有阈值;发光二极管有两种类型;一类是正面发光型LED, 另一类是侧面发光型LED,和正面发光型 LED相比,侧面发光型LED驱动电流较大,输出光功率较小,但由于光束辐射角较小,与光纤的耦
22、合效率较高,因而入纤光功率比正面发光型LED 大;和激光器相比, 发光二极管输出光功率较小,谱线宽度较宽,调制频率较低;但发光二极管性能稳固,寿命长,输出光功率线性范畴宽,而且制造工艺简洁,价格低廉;因此,这种器件在小容量短距离系统中发挥了重要作用;12. 发光二极管具有以下工作特性:1. 光输出特性 , 即 P-I特性当注入电流较小时,发光二极管的输出功率曲线基本是线性的.2. 光谱特性 , 发光二极管的发射光谱比半导体激光器宽许多,3. 温度特性 , 温度对发光二极管的光功率影响比半导体激光器要小;发光管的频率.4. 调制特性 . LED 可调的速率低第三章:1. 光纤的结构与类型 : 光
23、纤是一种工作在光波段的介质波导,可将光波约束在波导内部和表面,并引导光波沿光纤轴传播的介质光波导,纤芯的折射率高于包层的折射率(全反射),从而构成一种光波导结构, 使大部分的光被束缚在纤芯中传输;光纤是一种纤芯折射率比包层折射率高的同轴圆柱形电介质波导,它由纤芯(直径为 2a)、包层(直径为 2b)与涂敷层三大部分组成2. 光纤主要由硅酸盐玻璃、二氧化硅或塑料制成; 前者适用于长距离传输, 后两者适用于短距离传输,其中塑料光纤由于损耗较大,传输距离很短,主要应用于更小距离传输和一些较恶劣的环境中,在恶劣环境中因其机械强度较好,所以较前两种更具优越性;3. 光纤依据折射率分布可分为阶跃折射率分布
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年光纤通信-重要知识点总结教学文案 2022 年光 通信 重要 知识点 总结 教学 文案
限制150内