《2022年全国高中数学联赛初赛试题-参考答案及评分标准.docx》由会员分享,可在线阅读,更多相关《2022年全国高中数学联赛初赛试题-参考答案及评分标准.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品学习资源2021年全国高中数学联赛四川初赛试题欢迎下载精品学习资源欢迎下载精品学习资源2021 年全国高中数学联赛四川初赛试题参考答案及评分标准说明:构造 f n就 f n1112 1412 n ,n1242 n2n1 12n14n12n91 , 15 分欢迎下载精品学习资源1、评阅试卷时,请依据评分标准. 选择题和填空题只设5 分和 0 分两档;f nn22 n14n 212n8欢迎下载精品学习资源其它各题的评阅,请严格依据评分标准规定的评分档次给分,不要再增加其它中间档次 .2、假如考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评于是 f n严格单增,就3f n的最小值为f
2、132 ,4欢迎下载精品学习资源阅时可参考本评分标准适当划分档次评分,5 分一个档次,不要再增加其它中间档次 .即实数 k 的最大值是42 20 分欢迎下载精品学习资源一、选择题本大题共6 个小题,每题 5 分,共 30 分14、已知 a 、 b 、 c 为正实数,欢迎下载精品学习资源1、A2、D3、C4、C5、 A6、 B二、填空题本大题共6 个小题,每题 5 分,共 30 分求证:abcabc 111abc bca cab 欢迎下载精品学习资源113a 2b2c2欢迎下载精品学习资源7、1808、9、 4310、211、12、202142证 明 : 1 先 证 :abcabc, 等 价 于
3、 证 明 :欢迎下载精品学习资源三、解答题本大题共4 个小题,每题 20 分,共 80 分111欢迎下载精品学习资源13、设等比数列 an的前 n项和为Sn ,且 Sn2nr r 为常数,a2b 2c2欢迎下载精品学习资源*记 bn21log 2 annN ab2bc2ca2abc abc ,欢迎下载精品学习资源1求数列 anbn 的前n项和Tn ;令 xab, ybc, zca ,由不等式x2y2z2xyyzzx 知结论成欢迎下载精品学习资源1b1b1b立 5 分欢迎下载精品学习资源2假设对于任意的正整数n ,都有12nkn1 成立,111欢迎下载精品学习资源求实数 k 的最大值b1b2bn
4、 2再证:abc abc bca cab222a bc* 欢迎下载精品学习资源解: 1由条件易知a12r ,a2S2S12, a3S3S24 ,由于不等式是轮换对称的,不妨设 amax a, b, c,就 abc0, cab0欢迎下载精品学习资源2当b ca0 时,结论明显成立;欢迎下载精品学习资源1nn又由 a2a1a3 得 r1 5 分当 bca0 时,令ayz, bzx, cxy ,欢迎下载精品学习资源nn1于是 Sn2n1 故 a2, bn21log 2an 2n , anbnn 2 1就 xbca , y1cab , z1abc, 10 分欢迎下载精品学习资源12nnn1因此 Tn1
5、222n12n2222欢迎下载精品学习资源232Tn1222n12n2故 x, y, z均大于 0.欢迎下载精品学习资源由 - 得: T21222n 12nn2n1 ,故 Tn1 2 n 12 不等式 * 变为:2 xyz8 xyz111欢迎下载精品学习资源n所以,数列 anbn 的前 n项和为 Tnn1 2n 1n2 nN* 10 分111 yz2444 zx 2xy2欢迎下载精品学习资源2由于11b1 1b21bn112 1412n只需证:yzzxxy yz2 zx2xy2, 15 分欢迎下载精品学习资源kn1bbb,242n241欢迎下载精品学习资源12nn1留意到: yz4 yz,就2
6、, yzyz欢迎下载精品学习资源同理:41 , zx 2zx41 所以,原不等式成立 20 分xy2xy即 2m 3ay1 20因此式对任意y1 2 都成立,所以2m 3 a 0,即 3 2m a,欢迎下载精品学习资源15、已知抛物线 y2 2px 过定点 C1, 2,在抛物线上任取不同于点C 的一点 A,直线 AC 与直线 y x 3 交于点 P,过点 P 作 x 轴的平行线交抛物线于点B1求证:直线AB 过定点;因此直线 x my a 过定点 Q3, 2 10 分2由 1可设直线 AB 的方程为 x 3m y 2,与抛物线方程联立得y2 4my 42m 3 0就 y1 y2 4m, y1y
7、2 42m 3,欢迎下载精品学习资源2求 ABC 面积的最小值1SABC| CQ | | y1 y2| y1 y2| yy 24y y4m122 欢迎下载精品学习资源y解:1由抛物线 y2 2px 过定点 C1, 2,可得抛A2121 2欢迎下载精品学习资源2物线方程为 y2 4xyC所以当 m 1 时, ABC 面积的最小值为 42 20 分Q16、已知 a为实数,函数 fx | x2 ax|lnx,请争辩函数 fx的单调性欢迎下载精品学习资源设点 A 坐标为 0 , y0 y0 2,就直线 AC 的O4x解:由条件知函数f x的定义域为 0, 欢迎下载精品学习资源方程为 y 2y0y22x
8、 1,即 y 2PB4 x 1,y2假设 a 0,就 fxx2 ax ln x, 于是f x2 xa12 x2ax1,令欢迎下载精品学习资源0104aa28xxaa28欢迎下载精品学习资源与 y x 3 联立解得 P 点坐标为 y0y06 , 2 y02y012 5 分2f x0 ,得 x1420 , x20 42欢迎下载精品学习资源所以 B 点坐标为 2当 y0 y06222, 2 y0y012 22 y012所以,分f x 在 0, aa 48 上单调递减, 在 aa428 ,上单调递增; 5欢迎下载精品学习资源y012 时,A 坐标为 3 , y0 ,B 点坐标为 3,y02,直线 AB
9、 过定点 Q3, 2 2假设 a 0,就 f xxax2ln x,当x a 时,欢迎下载精品学习资源2 y012xaxln x ,当0 x a 时欢迎下载精品学习资源2当 y2 12 时,y0 y06 2y0,直线 AB 的方程为 yy0y02xy0 , 先争辩 gx x2 ax lnx x a的单调性2欢迎下载精品学习资源202224 y212x2ax1aa8欢迎下载精品学习资源0y0 y064g x 2x a令 gx 0,得 x 0,欢迎下载精品学习资源 y22 y24 y022yxx22aa842aa8欢迎下载精品学习资源2化简得, yy00y04x12y0 ,或: yy00y20 x0
10、34,当 a , 即 a 1时 , gx 在 a, 4 上 单 调 递 减 , 在4欢迎下载精品学习资源4易得,直线 AB 也过定点 Q3, 2 10 分法 2:由抛物线 y2 2px 过定点 C1, 2,可得抛物线方程为y2 4x设直线 AB 的方程为 x my a,与抛物线方程联立得,y2 4my 4a 0设 Ax1, y1, Bx2, y2 ,就 y1 y2 4m, y1y24a, aa8 422当 aa 4,上单调递增;8 a,即 a 1 时, gx在a,上单调递增 10 分欢迎下载精品学习资源P 点坐标为 B y2 3, y2 ,由于 AP 过定点 C, 再争辩当 a 0 时, hx
11、x2 ax lnx 0 x a的单调性2欢迎下载精品学习资源所以y22y231y12 ,又 x1 my1 a, x11hx2x a1x2xax1 x欢迎下载精品学习资源所以 m 1y1y2 2m 4 y1 a 1y2 2a 6 0 5 分将 y1y24a, y2 4m y1 代入上式,得 2m 3 ay1 2a 4m 6 0当a2 0,即 0 a 22 时, hx 0,hx在0, a上单调递减;当a2 0,即 a 22 时,欢迎下载精品学习资源令 hx0,得 02xaa8142 a, 0x222aa8a ,4欢迎下载精品学习资源所以 hx在0, aa428 , aa 428 , a上单调递减,欢迎下载精品学习资源在 aa 48 , aa 48 上单调递增 15 分欢迎下载精品学习资源综上可得:2 当 a 1 时, fx在0, aa4增;8aa2上单调递减,在 48 ,上单调递欢迎下载精品学习资源 当 1 a 22 时, fx在0, a上单调递减,在 a,上单调递增;欢迎下载精品学习资源2 当 a 22 时, fx在 0, aa2428 , aa48 , a上单调递减,欢迎下载精品学习资源欢迎下载精品学习资源2在 aa 48 , aa 48 , a,上单调递增 20 分欢迎下载
限制150内