2022年新版北师大版八级数学上册知识点全面总结.docx
《2022年新版北师大版八级数学上册知识点全面总结.docx》由会员分享,可在线阅读,更多相关《2022年新版北师大版八级数学上册知识点全面总结.docx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 勾股定理新版北师大版八年级数学上册学问点全面总结- 18 -1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方;即a 2b2c2 ;2. 勾股定理的证明:用三个正方形的面积关系进行证明(两种方法);3. 勾股定理逆定理:假如三角形的三边长a , b , c 满意 a2b 2c2 ,那么这个三角形是直角三角形;满意 a 2b2c2 的三个正整数称为勾股数;常见勾股数: ( 3、4、5)( 6、8、10)( 5、12、13)(8、15、17)其次章 实数1. 平方根和算术平方根的概念及其性质:( 1)概念:假如x2a ,那么 x 是 a 的平方根,记作:a ;其中a 叫做 a 的算术
2、平方根;( 2)性质:当 a 0 时,a 0;当 a 时,a 无意义;2. 立方根的概念及其性质:2a a ;a2a ;( 1)概念:如 x3a ,那么 x 是 a 的立方根,记作:3 a ;( 2)性质:3 a3a ;33 aa ; 3a 3 a3. 实数的概念及其分类:( 1)概念:实数是有理数和无理数的统称;( 2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零;无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数;4. 与实数有关的概念:在实数范畴内,相反数,倒数,肯定值的意义与有理数范畴内的意义完全一样;在实
3、数范畴内,有理数的运算法就和运算律同样成立;每一个实数都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的;因此,数轴正好可以被实数填满;aa5. 算术平方根的运算律:aba b( a 0, b 0);( a 0, b 0);bb第三章 图形的平移与旋转1. 平移:在平面内,将一个图形沿某个方向移动肯定的距离,这样的图形运动称为平移;平移不转变图形大小和外形,转变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等;2. 旋转:在平面内, 将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;这点定点
4、称为旋转中心,转动的角称为旋转角; 旋转不转变图形大小和外形,转变了图形的位置; 经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等;3. 作平移图与旋转图;第四章 四边形性质的探究1. 多边形的分类:三角形特殊等腰三角形、直角三角形多边四边形形特殊特殊平行四边形特殊梯形菱形矩形等腰梯形特殊正方形特殊边数多于 4 的多边形正多边形2. 平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:( 1)平行四边形:两组对边分别平行的四边形叫做平行四边形;平行四边形的对边平行且相等; 对角相等,邻角互补;
5、对角线相互平分;两条对角线相互平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形;( 2)菱形:一组邻边相等的平行四边形叫做菱形;菱形的四条边都相等;对角线相互垂直平分, 每一条对角线平分一组对角;四条边都相等的四边形是菱形;对角线相互垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线相互平分且垂直的四边形是菱形;菱形的面积等于两条对角线乘积的一半(面积运算,即S 菱形 =L 1*L 2/2 );( 3)矩形:有一个内角是直角的平行四边形叫做矩形;矩形的对角
6、线相等;四个角都是直角;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;直角三角形斜边上的中线等于斜边长的一半;在直角三角形中 30所对的直角边是斜边的一半 ;( 4)正方形: 一组邻边相等的矩形叫做正方形;正方形具有平行四边形、 菱形、 矩形的一切性质;( 5)等腰梯形同一底上的两个内角相等,对角线相等; 同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形;( 6)三角形中位线:连接三角形相连两边重点的线段;性质:平行且等于第三边的一半3多边形的内角和公式: ( n-2) *18 0;多边形的外角和都等于360 ;4中心对称图形:在平
7、面内,一个图形绕某个点旋转180 ,假如旋转前后的图形相互重合,那么这个图形叫做中心对称图形;第五章 位置的确定1. 直角坐标系及坐标的相关学问;2. 点的坐标间的关系:假如点A 、B 横坐标相同,就 AB y 轴;假如点 A、B 纵坐标相同,就AB x 轴;3. 将图形的纵坐标保持不变,横坐标变为原先的 1倍,所得到的图形与原图形关于 y 轴对称; 将图形的横坐标保持不变, 纵坐标变为原先的 1倍,所得到的图形与原图形关于 x 轴对称; 将图形的横、纵坐标都变为原先的 1倍,所得到的图形与原图形关于原点成中心对称;第六章 一次函数1. 一次函数定义:如两个变量x, y 间的关系可以表示成yk
8、xb ( k,b 为常数, k0) )的形式,就称 y 是 x 的一次函数;当b0 时称 y 是 x 的正比例函数;正比例函数是特殊的一次函数;2. 作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式;3. 正比例函数图象性质:经过0,0 ; k 0 时,经过一、三象限;k 0 时,经过二、四象限;4. 一次函数图象性质 :( 1)当 k 0 时, y 随 x 的增大而增大,图象呈上升趋势;当k 0 时, y 随 x 的增大而减小,图象呈下降趋势;( 2)直线 ykxb 与轴的交点为0,b ,与 x 轴的交点为b,0;k( 3)在一次函数 y kx b 中: k 0, b 0 时函数
9、图象经过一、二、三象限; k 0, b 0 时函数图象经过一、三、四象限; k 0, b 0 时函数图象经过一、二、四象限; k 0, b 0 时函数图象经过二、三、四象限;( 4)在两个一次函数中, 当它们的 k 值相等时, 其图象平行; 当它们的 k 值不等时, 其图象相交; 当它们的 k 值乘积为1时,其图象垂直; 4已经任意两点求一次函数的表达式、依据图象求一次函数表达式;5. 运用一次函数的图象解决实际问题;第七章 二元一次方程组1. 二元一次方程及二元一次方程组的定义;2. 解方程组的基本思路是消元,消元的基本方法是:代入消元法;加减消元法;图象法;3. 方程组解应用题的关键是找等
10、量关系 ;4. 解应用题时,按设、列、解、答四步进行;5. 每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点;第八章 数据的代表1. 算术平均数与加权平均数的区分与联系:算术平均数是加权平均数的一种特殊情形,(它特殊在各项的权相等) ,当实际问题中, 各项的权不相等时,运算平均数时就要采纳加权平均数,当各项的权相等时,运算平均数就要采纳算术平均数;2. 中位数和众数:中位数指的是n 个数据按大小次序(从大到小或从小到大)排列,处在最中间位置的一个数据 (或最中间两个数据的平均数) ;众数指的是一组数据中显现次数最多的那个数据;应知应会的学问点因式分解1.
11、 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解; 留意:因式分解与乘法是相反的两个转化. 2因式分解的方法:常用“提取公因式法” 、“公式法”、“分组分解法”、“十字相乘法” .3公因式的确定:系数的最大公约数相同因式的最低次幂.留意公式: a+b=b+a;a-b=-b-a;a-b2=b-a2;a-b3=-b-a3. 4因式分解的公式:1平方差公式: a2-b2=(a+ b)( a- b);2完全平方公式:a2+2ab+b2=a+b2,a2-2ab+b2=a-b2. 5因式分解的留意事项:(1) )挑选因式分解方法的一般次序是:一提取、二 公式、三 分组、四 十字;(
12、2) )使用因式分解公式时要特殊留意公式中的字母都具有整体性;(3) )因式分解的最终结果要求分解到每一个因式都不能分解为止;(4) )因式分解的最终结果要求每一个因式的首项符号为正;(5) )因式分解的最终结果要求加以整理;(6) )因式分解的最终结果要求相同因式写成乘方的形式.6. 因式分解的解题技巧: ( 1)换位整理,加括号或去括号整理; ( 2)提负号;( 3) 全变号;(4)换元;( 5)配方;(6)把相同的式子看作整体; (7)敏捷分组;(8)提取分数系数;(9)绽开部分括号或全部括号; (10)拆项或补项 .7. 完全平方式: 能化为( m+n)2 的多项式叫完全平方式; 对于
13、二次三项式 x2+px+q,2有“ x2+px+q 是完全平方式分式pq2”.A1. 分式:一般地,用 A、B 表示两个整式, AB 就可以表示为 B的形式,假如 BA中含有字母,式子 B叫做分式 .整式有理式2. 有理式:整式与分式统称有理式;即分式 .3. 对于分式的两个重要判定: ( 1)如分式的分母为零,就分式无意义,反之有意义;( 2)如分式的分子为零,而分母不为零,就分式的值为零;留意:如分式的分子为零,而分母也为零,就分式无意义 .4. 分式的基本性质与应用:(1) )如分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2) )留意:在分式中,分子、分母、分式本
14、身的符号,转变其中任何两个,分式的值不变;分子即分母分子分子分子分母分母分母(3) )繁分式化简时,采纳分子分母同乘小分母的最小公倍数的方法,比较简洁. 5分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;留意: 分式约分前常常需要先因式分解 .6. 最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;留意: 分式运算的最终结果要求化为最简分式.ac7. 分式的乘除法法就: bdac , bda ca db dbcad bc.8. 分式的乘方:a nanb bn.(n为正整数).9. 负整指数运算法就:1( 1)公式: a0=1a0,a-n= ana 0;(2) )正
15、整指数的运算法就都可用于负整指数运算;na(3) )公式: bnba nbmna, b ma;( 4)公式: (-1)-2=1, ( -1)-3=-1. 10分式的通分:依据分式的基本性质,把几个异分母的分式分别化成与原先的分式 相等的同分母的分式,叫做分式的通分;留意:分式的通分前要先确定最简公分母.11. 最简公分母的确定:系数的最小公倍数相同因式的最高次幂.abab ;acadbcadbc12. 同分母与异分母的分式加减法法就:cccbdbdbdbd.13. 含有字母系数的一元一次方程:在方程 ax+b=0a 0中,x 是未知数 ,a 和 b 是用字母表示的已知数,对 x 来说,字母 a
16、 是 x 的系数,叫做字母系数,字母 b 是常数项, 我们称它为含有字母系数的一元一次方程 .留意:在字母方程中 ,一般用 a、b、c 等表示已知数,用 x、y、z 等表示未知数 .14. 公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;留意:公 式变形的本质就是解含有字母系数的方程.特殊要留意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15. 分式方程:分母里含有未知数的方程叫做分式方程;留意:以前学过的,分母里不含未知数的方程是整式方程 .16. 分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根
17、,故分式方程必需验增根;留意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,由于可能丢根 .17. 分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),如值为零,求出的根是增根,这时原方程无解;如值不为零,求出的根是原方程的解; 留意:由此可判定, 使分母的值为零的未知数的值可能是原方程的增根. 18分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序 .数的开方1平方根的定义:如 x2=a,那么 x 叫 a 的平方根,(即 a 的平方根是 x);留意:(1)a叫 x 的平方数,(2)已知 x 求 a 叫乘方,已知
18、a 求 x 叫开方,乘方与开方互为逆运算 . 2平方根的性质:( 1)正数的平方根是一对相反数;( 2) 0 的平方根仍是 0;( 3)负数没有平方根 .3平方根的表示方法: a 的平方根表示为a 和a .留意:a 可以看作是一个数, 也可以认为是一个数开二次方的运算 .4算术平方根:正数a 的正的平方根叫 a 的算术平方根,表示为a .留意: 0 的算术平方根仍是 0.5三个重要非负数:a20 ,|a| 0 , a 0 .留意:非负数之和为 0,说明它们都是0.6两个重要公式:( 1)2aa ; a0a 2a( 2)aaa a00.7立方根的定义:如 x3=a,那么 x 叫 a 的立方根,(
19、即 a 的立方根是 x).留意:(1)a叫 x 的立方数;(2)a 的立方根表示为 3 a ;即把 a 开三次方 . 8立方根的性质:( 1)正数的立方根是一个正数;( 2) 0 的立方根仍是 0;(3) )负数的立方根是一个负数 .339. 立方根的特性:aa .10. 无理数:无限不循环小数叫做无理数 .留意: 和开方开不尽的数是无理数 .11. 实数:有理数和无理数统称实数 .实数12 实 数 的 分 类 :( 1 )正实数实数 0有理数无理数正有理数0负有理数正无理数负无理数有限小数与无限循环小无限不循环小数数( 2 )负实数 .13. 数轴的性质:数轴上的点与实数一一对应.14. 无
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 新版 北师大 级数 上册 知识点 全面 总结
限制150内