《2022年最全面高二化学选修4重点知识点归纳总结大全.docx》由会员分享,可在线阅读,更多相关《2022年最全面高二化学选修4重点知识点归纳总结大全.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二化学选修 4 学问点归纳总结大全高二部分理科生可能觉得学习化学学问点归纳不重要,可一到考试就不知道怎么去复习了;为了便利大家的时间,第 1 章、化学反应与能量转化化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中相伴着能量的释放或吸取;一、化学反应的热效应1、化学反应的反应热(1) 反应热的概念:当化学反应在肯定的温度下进行时,反应所释放或吸取的热量称为该反应在此温度下的热效应,简称反应热;用符号Q 表示;(2) 反应热与吸热反应、放热反应的关系;Q0 时,反应为吸热反应 ;Q0 时,反应为放热反应;(3) 反应热的测定测定反应热的仪器为量热计, 可测出反应前后溶液温度
2、的变化, 依据体系的热容可运算出反应热,运算公式如下:Q=-CT2-T1式中 C 表示体系的热容, T1、T2 分别表示反应前和反应后体系的温度;试验室常常测定中和反应的反应热;2、化学反应的焓变(1) 反应焓变物质所具有的能量是物质固有的性质,可以用称为焓的物理量第 17 页,共 17 页来描述,符号为 H,单位为 kJmol-1;反应产物的总焓与反应物的总焓之差称为反应焓变, 用H 表示;(2) 反应焓变 H 与反应热 Q 的关系;对于等压条件下进行的化学反应,如反应中物质的能量变化全部转化为热能,就该反应的反应热等于反应焓变,其数学表达式为: Qp=H=H 反应产物 -H 反应物 ;(3
3、) 反应焓变与吸热反应,放热反应的关系: H0,反应吸取能量,为吸热反应; H0,反应释放能量,为放热反应;(4) 反应焓变与热化学方程式:把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如: H2g+O2g=H2Ol;H298K=-285.8kJmol-1书写热化学方程式应留意以下几点:化学式后面要注明物质的集合状态:固态s、液态 l 、气态g、溶液 aq;化学方程式后面写上反应焓变H, H 的单位是Jmol-1 或kJmol-1,且 H 后注明反应温度;热化学方程式中物质的系数加倍, H 的数值也相应加倍;3、反应焓变的运算(1) 盖斯定律对于一个化学反应,无
4、论是一步完成,仍是分几步完成,其反应焓变一样,这一规律称为盖斯定律;(2) 利用盖斯定律进行反应焓变的运算;常见题型是给出几个热化学方程式,合并出题目所求的热化学 方程式,依据盖斯定律可知,该方程式的H 为上述各热化学方程式的 H 的代数和;(3) 依据标准摩尔生成焓, fHm 运算反应焓变 H;对任意反应: aA+bB=cC+dD H=cfHmC+dfHmD-afHmA+bfHmB第 2 章、化学平稳一、化学反应的速率1、化学反应是怎样进行的(1) 基元反应:能够一步完成的反应称为基元反应,大多数化学反应都是分几步完成的;(2) 反应历程:平常写的化学方程式是由几个基元反应组成的总 反应;总
5、反应中用基元反应构成的反应序列称为反应历程,又称反应机理;(3) 不同反应的反应历程不同;同一反应在不同条件下的反应历程也可能不同,反应历程的差别又造成了反应速率的不同;2、化学反应速率(1) 概念:单位时间内反应物的减小量或生成物的增加量可以表示反应的快慢,即反应的速率,用符号 v 表示;(2) 表达式: v=c/t(3) 特点对某一详细反应,用不同物质表示化学反应速率时所得的数值可能不同,但各物质表示的化学反应速率之比等于化学方程式中各物质的系数之比;3、浓度对反应速率的影响(1) 反应速率常数 K反应速率常数 K 表示单位浓度下的化学反应速率,通常,反应速率常数越大, 反应进行得越快;
6、反应速率常数与浓度无关, 受温度、催化剂、固体表面性质等因素的影响;(2) 浓度对反应速率的影响增大反应物浓度,正反应速率增大,减小反应物浓度,正反应速率减小;增大生成物浓度,逆反应速率增大,减小生成物浓度,逆反应速率减小;(3) 压强对反应速率的影响压强只影响气体,对只涉及固体、液体的反应,压强的转变对反应速率几乎无影响;压强对反应速率的影响,实际上是浓度对反应速率的影响,因 为压强的转变是通过转变容器容积引起的; 压缩容器容积, 气体压强增大,气体物质的浓度都增大,正、逆反应速率都增加; 增大容器容积,气体压强减小 ;气体物质的浓度都减小,正、逆反应速率都减小;4、温度对化学反应速率的影响
7、(1) 体会公式阿伦尼乌斯总结出了反应速率常数与温度之间关系的体会公式:式中 A 为比例系数, e 为自然对数的底, R 为摩尔气体常数量,Ea 为活化能;由公式知,当 Ea0 时,上升温度,反应速率常数增大,化学反应速率也随之增大; 可知,温度对化学反应速率的影响与活化能有关;(2) 活化能 Ea;活化能 Ea 是活化分子的平均能量与反应物分子平均能量之差;不同反应的活化能不同,有的相差很大;活化能Ea 值越大,转变温度对反应速率的影响越大;5、催化剂对化学反应速率的影响(1) 催化剂对化学反应速率影响的规律:催化剂大多能加快反应速率,缘由是催化剂能通过参与反应, 转变反应历程,降低反应的活
8、化能来有效提高反应速率;(2) 催化剂的特点:催化剂能加快反应速率而在反应前后本身的质量和化学性质不变;催化剂具有挑选性;催化剂不能转变化学反应的平稳常数, 不引起化学平稳的移动, 不能转变平稳转化率;二、化学反应条件的优化工业合成氨1、合成氨反应的限度合成氨反应是一个放热反应,同时也是气体物质的量减小的熵减反应, 故降低温度、 增大压强将有利于化学平稳向生成氨的方向移动;2、合成氨反应的速率(1) 高压既有利于平稳向生成氨的方向移动,又使反应速率加快,但高压对设备的要求也高,故压强不能特殊大;(2) 反应过程中将氨从混合气中分别出去,能保持较高的反应速率;(3) 温度越高,反应速率进行得越快
9、,但温度过高,平稳向氨分解的方向移动,不利于氨的合成;(4) 加入催化剂能大幅度加快反应速率;3、合成氨的相宜条件在合成氨生产中,达到高转化率与高反应速率所需要的条件有时是冲突的, 故应当查找以较高反应速率并获得适当平稳转化率的反应条件:一般用铁做催化剂,掌握反应温度在700K 左右,压强范畴大致在 1107Pa1108Pa之间,并采纳 N2 与 H2 分压为 1 2.8 的投料比;二、化学反应的限度1、化学平稳常数(1) 对达到平稳的可逆反应,生成物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比为一常数,该常数称为化学平稳常数,用符号 K 表示;(2) 平稳常数 K 的大小反映了化学反
10、应可能进行的程度即反应限度,平稳常数越大,说明反应可以进行得越完全;(3) 平稳常数表达式与化学方程式的书写方式有关;对于给定的可逆反应,正逆反应的平稳常数互为倒数;(4) 借助平稳常数,可以判定反应是否到平稳状态:当反应的浓度商 Qc 与平稳常数 Kc 相等时,说明反应达到平稳状态;2、反应的平稳转化率(1) 平稳转化率是用转化的反应物的浓度与该反应物初始浓度的比值来表示;如反应物 A 的平稳转化率的表达式为:A=(2) 平稳正向移动不肯定使反应物的平稳转化率提高;提高一种反应物的浓度,可使另一反应物的平稳转化率提高;(3) 平稳常数与反应物的平稳转化率之间可以相互运算;3、反应条件对化学平
11、稳的影响(1) 温度的影响上升温度使化学平稳向吸热方向移动;降低温度使化学平稳向放热方向移动;温度对化学平稳的影响是通过转变平稳常数实现的;(2) 浓度的影响增大生成物浓度或减小反应物浓度,平稳向逆反应方向移动;增大反应物浓度或减小生成物浓度,平稳向正反应方向移动;温度肯定时,转变浓度能引起平稳移动,但平稳常数不变;化 工生产中, 常通过增加某一价廉易得的反应物浓度, 来提高另一昂贵的反应物的转化率;(3) 压强的影响Vg=0 的反应,转变压强,化学平稳状态不变;Vg0 的反应,增大压强,化学平稳向气态物质体积减小的方向移动;(4) 勒夏特列原理由温度、浓度、压强对平稳移动的影响可得出勒夏特列
12、原理: 假如转变影响平稳的一个条件 浓度、压强、温度等 平稳向能够减弱这种转变的方向移动;三、化学反应的方向1、反应焓变与反应方向放热反应多数能自发进行,即H0 的反应大多能自发进行;有些吸热反应也能自发进行;如NH4HCO3 与 CH3COOH 的反应;有些吸热反应室温下不能进行, 但在较高温度下能自发进行, 如 CaCO3 高温下分解生成 CaO、CO2;2、反应熵变与反应方向熵是描述体系纷乱度的概念,熵值越大,体系纷乱度越大;反 应的熵变 S 为反应产物总熵与反应物总熵之差; 产愤怒体的反应为熵增加反应,熵增加有利于反应的自发进行;3、焓变与熵变对反应方向的共同影响H-TS0 反应能自发
13、进行;H-TS=0 反应达到平稳状态;H-TS0 反应不能自发进行;在温度、压强肯定的条件下,自发反应总是向H-TS0 的方向进行,直至平稳状态;第 3 章、水溶液中的电离平稳一、水溶液1、水的电离H2OH+OH-水 的 离 子 积 常 数KW=H+OH-, 25 时 ,KW=1.010-14mol2L-2 ;温度上升,有利于水的电离,KW 增大;2、溶液的酸碱度室温下,中性溶液: H+=OH-=1.010-7molL-1 ,pH=7 酸性溶液: H+OH- , H+1.010-7molL-1 ,pH7碱性溶液: H+OH- ,OH-1.010-7molL-1 , pH73、电解质在水溶液中的
14、存在形状(1) 强电解质强电解质是在稀的水溶液中完全电离的电解质,强电解质在溶液中以离子形式存在,主要包括强酸、强碱和绝大多数盐,书写电离方程式时用 =表示;(2) 弱电解质在水溶液中部分电离的电解质,在水溶液中主要以分子形状存在,少部分以离子形状存在,存在电离平稳,主要包括弱酸、弱碱、水及极少数盐,书写电离方程式时用表示;二、弱电解质的电离及盐类水解1、弱电解质的电离平稳;(1) 电离平稳常数在肯定条件下达到电离平稳时,弱电解质电离形成的各种离子 浓度的乘积与溶液中未电离的分子浓度之比为一常数,叫电离平稳常数;弱酸的电离平稳常数越大, 达到电离平稳时, 电离出的 H+越多;多元弱酸分步电离,
15、 且每步电离都有各自的电离平稳常数,以第一步电离为主;(2) 影响电离平稳的因素,以 CH3COOHCH3COO-+H+ 为例;加水、加冰醋酸,加碱、升温,使CH3COOH 的电离平稳正向移动,加入 CH3COONa 固体,加入浓盐酸,降温使CH3COOH 电离平稳逆向移动;2、盐类水解(1) 水解实质盐溶于水后电离出的离子与水电离的H+或 OH-结合生成弱酸或弱碱,从而打破水的电离平稳,使水连续电离,称为盐类水解;(2) 水解类型及规律强酸弱碱盐水解显酸性;NH4Cl+H2ONH3H2O+HCl强碱弱酸盐水解显碱性;CH3COONa+H2OCH3COOH+NaOH强酸强碱盐不水解;弱酸弱碱盐
16、双水解;Al2S3+6H2O=2AlOH3+3H2S(3) 水解平稳的移动加热、加水可以促进盐的水解,加入酸或碱能抑止盐的水解, 另外,弱酸根阴离子与弱碱阳离子相混合时相互促进水解;三、离子反应1、离子反应发生的条件(1) 生成沉淀既有溶液中的离子直接结合为沉淀,又有沉淀的转化;(2) 生成弱电解质主要是 H+与弱酸根生成弱酸,或 OH-与弱碱阳离子生成弱碱, 或 H+与 OH-生成 H2O;(3) 生成气体生成弱酸时,许多弱酸能分解生成气体;(4) 发生氧化仍原反应强氧化性的离子与强仍原性离子易发生氧化仍原反应,且大多在酸性条件下发生;2、离子反应能否进行的理论判据(1) 依据焓变与熵变判据
17、对 H-TS0 的离子反应,室温下都能自发进行;(2) 依据平稳常数判据离子反应的平稳常数很大时,说明反应的趋势很大;3、离子反应的应用(1) 判定溶液中离子能否大量共存相互间能发生反应的离子不能大量共存,留意题目中的隐含条件;(2) 用于物质的定性检验依据离子的特性反应,主要是沉淀的颜色或气体的生成,定性检验特点性离子;(3) 用于离子的定量运算常见的有酸碱中和滴定法、氧化仍原滴定法;(4) 生活中常见的离子反应;硬水的形成及软化涉及到的离子反应较多,主要有: Ca2+、Mg2+ 的形成;CaCO3+CO2+H2O=Ca2+2HCO3-MgCO3+CO2+H2O=Mg2+2HCO3-加热煮沸
18、法降低水的硬度: Ca2+2HCO3-=CaCO3+CO2+H2O Mg2+2HCO3-=MgCO3+CO2+H2O或加入 Na2CO3 软化硬水:Ca2+CO32-=CaCO3,Mg2+CO32-=MgCO3四、沉淀溶解平稳1、沉淀溶解平稳与溶度积(1) 概念当固体溶于水时,固体溶于水的速率和离子结合为固体的速率相等时,固体的溶解与沉淀的生成达到平稳状态, 称为沉淀溶解平稳;其平稳常数叫做溶度积常数,简称溶度积,用Ksp 表示;PbI2sPb2+aq+2I-aq Ksp=Pb2+I-2=7.110-9mol3L-3(2) 溶度积 Ksp 的特点Ksp 只与难溶电解质的性质和温度有关,与沉淀的
19、量无关,且溶液中离子浓度的变化能引起平稳移动,但并不转变溶度积;Ksp 反映了难溶电解质在水中的溶解才能;2、沉淀溶解平稳的应用(1) 沉淀的溶解与生成依据浓度商 Qc 与溶度积 Ksp 的大小比较,规章如下:Qc=Ksp 时,处于沉淀溶解平稳状态;QcKsp 时,溶液中的离子结合为沉淀至平稳;Qc(2) 沉淀的转化依据溶度积的大小,可以将溶度积大的沉淀可转化为溶度积更 小的沉淀,这叫做沉淀的转化; 沉淀转化实质为沉淀溶解平稳的移动;第四章 电化学一、化学能转化为电能电池1、原电池的工作原理(1) 原电池的概念:把化学能转变为电能的装置称为原电池;(2) Cu-Zn 原电池的工作原理:如图为
20、Cu-Zn 原电池,其中 Zn 为负极, Cu 为正极,构成闭合回路后的现象是: Zn 片逐步溶解, Cu 片上有气泡产生,电流计指针发生偏转;该原电池反应原理为:Zn 失电子,负极反应为: ZnZn2+2e-;Cu 得电子,正极反应为: 2H+2e-H2;电子定向移动形成电流;总反应为: Zn+CuSO4=ZnSO4+Cu;(3) 原电池的电能如两种金属做电极,活泼金属为负极,不活泼金属为正极;如一种金属和一种非金属做电极,金属为负极,非金属为正极;2、化学电源(1) 锌锰干电池负极反应: ZnZn2+2e-;正极反应: 2NH4+2e-2NH3+H2;(2) 铅蓄电池负极反应: Pb+SO
21、42-=PbSO4+2e-正极反应: PbO2+4H+SO42-+2e-=PbSO4+2H2O放电时总反应: Pb+PbO2+2H2SO4=2PbSO4+2H2O;充电时总反应: 2PbSO4+2H2O=Pb+PbO2+2H2SO4;(3) 氢氧燃料电池负极反应: 2H2+4OH-4H2O+4e- 正极反应: O2+2H2O+4e-4OH- 电池总反应: 2H2+O2=2H2O二、电能转化为化学能电解1、电解的原理(1) 电解的概念:在直流电作用下,电解质在两上电极上分别发生氧化反应和仍原反应的过程叫做电解;电能转化为化学能的装置叫做电解池;(2) 电极反应:以电解熔融的 NaCl 为例:阳极
22、:与电源正极相连的电极称为阳极,阳极发生氧化反应:2Cl-Cl2+2e-;阴极:与电源负极相连的电极称为阴极,阴极发生仍原反应:Na+e-Na;总方程式: 2NaCl熔=电解2Na+Cl2 2、电解原理的应用(1) 电解食盐水制备烧碱、氯气和氢气;阳极: 2Cl-Cl2+2e-阴极: 2H+e-H2总反应: 2NaCl+2H2O 2NaOH+H2+Cl2(2) 铜的电解精炼;粗铜含 Zn、Ni、Fe、Ag 、Au 、Pt为阳极, 精铜为阴极, CuSO4溶液为电解质溶液;阳极反应: CuCu2+2e-,仍发生几个副反应ZnZn2+2e-;NiNi2+2e-FeFe2+2e-Au、Ag、Pt 等
23、不反应,沉积在电解池底部形成阳极泥;阴极反应: Cu2+2e-Cu(3) 电镀:以铁表面镀铜为例待镀金属 Fe 为阴极,镀层金属 Cu 为阳极, CuSO4 溶液为电解质溶液;阳极反应: CuCu2+2e- 阴极反应: Cu2+2e-Cu 3、金属的腐蚀与防护(1) 金属腐蚀金属表面与四周物质发生化学反应或因电化学作用而遭到破坏的过程称为金属腐蚀;(2) 金属腐蚀的电化学原理;生铁中含有碳,遇有雨水可形成原电池,铁为负极,电极反应为: FeFe2+2e-; 水膜 中 溶 解的 氧 气 被仍原 , 正 极 反 应为: O2+2H2O+4e-4OH- , 该 腐 蚀 为 吸 氧 腐 蚀 , 总 反 应 为 : 2Fe+O2+2H2O=2FeOH2 , FeOH2 又 立 即 被 氧 化 :4FeOH2+2H2O+O2=4FeOH3, FeOH3 分解转化为铁锈;如水膜在酸度较高的环境下,正极反应为: 2H+2e-H2,该腐蚀称为析氢腐蚀;(3) 金属的防护金属处于干燥的环境下,或在金属表面刷油漆、陶瓷、沥青、塑料及电镀一层耐腐蚀性强的金属防护层,破坏原电池形成的条件;从而达到对金属的防护 ;也可以利用原电池原理,采纳牺牲阳极爱护法;也可以利用电解原理,采纳外加电流阴极爱护法;
限制150内