基于斜角切削模型的铣削加工稳定性研究-魏子淇.pdf





《基于斜角切削模型的铣削加工稳定性研究-魏子淇.pdf》由会员分享,可在线阅读,更多相关《基于斜角切削模型的铣削加工稳定性研究-魏子淇.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第12期2017年12月组合机床与自动化加工技术Modular Machine Tool & Automatic Manufacturing TechniqueNo.12Dec. 2017文章编号:1001 2265(2017)12 0041 05 DOI:10.13462/ j. cnki. mmtamt.2017.12.010收稿日期:2017 02 26;修回日期:2017 04 15基金项目:国家自然科学基金项目(51435001、51405316);中航工业产学研专项项目(cxy2013CD36);国家高技术研究发展计划项目(863计划)(2015AA043001)作者简介:魏子淇(
2、1991 ),男,河南焦作人,四川大学硕士研究生,研究方向为数控机床加工工艺,(E mail)wzqi ss163. com。基于斜角切削模型的铣削加工稳定性研究魏子淇1,王家序1,2,周青华1,熊青春1,3,杨 勇1,王洪乐1(1.四川大学空天科学与工程学院,成都610065;2.重庆大学机械传动国家重点实验室,重庆400044;3.成都飞机工业(集团)有限公司,成都610092)摘要:针对零件加工过程中发生的颤振现象,结合大型A/ B摆五轴龙门铣床,在斜角切削模型的基础上进行了铣削稳定性的研究。基于斜角切削的工作正交平面和法平面参考坐标系,引入切削力系数的修正形式;将切削刃微元在局部坐标系
3、下进行切向、径向分解,经过坐标变换得到在整体坐标系下的切削分量,通过积分求和得到整个铣刀上的切削力。在此基础上采用完全离散解析法对颤振稳定域叶瓣图进行仿真,仿真结果表明,铣削过程中参数选取与颤振临界切削深度存在非线性关系;随着斜角切削刃倾角的增大,临界切削深度加深,稳定区域变大,铣削加工颤振的稳定性得到改善。关键词:斜角切削;表面质量;铣削稳定性;稳定性叶瓣图中图分类号:TH162;TG506 文献标识码:AMilling Stability Based on Oblique Cutting Model TheoryWEI Zi-qi1, WANG Jia-xu1,2, ZHOU Qing-h
4、ua1, XONG Qing-chun1,3, YANG Yong1, WANG Hong-le1(1. School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China;2. State Key Laborato-ry of Mechanical Transmissions,Chongqing University, Chongqing 400044,China)Abstract: Taking the chatter phenomenon during the machining process i
5、nto consideration, a cutting modelcombined with an A/B swing five axis planer-type milling machine was established to study milling stabili-ty. A modified form of cutting force coefficient was proposed based on the reference frame of orthogonalplane and normal plane in oblique cutting. The cutting e
6、dge element was decomposed along tangential andradial directions in a local coordinate system. Then, the cutting component in the global coordinate systemcan be obtained through coordinate transform. After that, the whole cutting force of the milling cutter wascalculated by summation. Further, the f
7、ull discrete analysis method was utilized to simulate the formation ofthe stability field lobe diagrams. The simulation results show that there is a nonlinear relationship betweenthe parameter and critical cutting depth in the milling processing; as the increase of tool cutting edge inclina-tion, th
8、e critical cutting depth becomes deeper, the stability region becomes larger and the stability of themilling chatter is improved.Key words: oblique cutting; surface quality; stability of cutting; stability field lobe diagrams0 引言机床加工是制造零件过程中的一个重要步骤,决定了工件表面质量好坏1。在机床高速运行的过程中,当刀具运行到下一转时,前一转形成的凹凸不平的加工表面
9、会以非线性激振力的形式作用到当前的加工过程中,并不断持续下去,从而形成所谓的颤振2。颤振是发生在切削过程中一种强烈的自激振动,会严重制约切削效率、降低零件的加工精度、损坏刀具甚至机床本身。目前,学者已针对颤振稳定性进行了广泛研究3。 Ding4提出了完全离散法,在对时间等距离离散后,积分得到Floquet转移矩阵,根据Floquet理论判断加工稳定性,该方法计算效率和精度较高。切削加工模型是有效分析机床加工颤振及稳定的前提。 Altintas等5建立了一维切削加工模型,该模型只在进给X方向上建立了刀具或工件的阻尼和刚度。Vincent等6利用一维颤振模型,用解析法构建出三维颤振稳定性叶瓣图,并
10、根据工件与刀具相对位置确定优化的参数,较好地符合实际工况。 Jensen和Shin7针对端铣稳定性预测问题,提出了二维切削加工模型,该模型同时在进给方向X和垂直于进给方向Y上建立了刀具或工件的阻尼和刚度。三维切削加工模型后来也被Altintas等8提出,三维切削模型在二维切削模万方数据型的基础上,建立了垂直于切削平面XY的Z方向,在此方向上添加刀具或工件的阻尼和刚度。汤爱君等人9建立了薄壁零件铣削加工的三维稳定性模型,通过仿真得到了薄壁零件铣削颤振的轴向、径向切深和主轴转速的三维稳定性图。张雪薇等10以低刚度薄壁零件为研究对象,在三维铣削加工模型的基础上,对主轴转速与颤振临界轴向切深之间的关系
11、进行了仿真与验证。而上述研究所建立的切削加工模型,不论是一维、二维还是三维,都是基于传统非斜角切削模型,没有考虑刀具加工倾斜角度对切削加工稳定性的影响。本文针对大型A/ B摆五轴龙门铣床,引入斜角切削加工模型,对A/ B摆角龙门铣床的铣削稳定性的研究。分析模型将引入切削力系数,利用完全离散法得到颤振稳定性叶瓣图,在此基础上分析切削刃倾角对系统稳定性的影响。本文研究结果预期可为A/ B摆角龙门铣床的加工颤振抑制提供一定的理论参考。1 斜角铣削模型1.1 A/B摆角五轴龙门铣床加工方式A/ B摆角五轴龙门铣床作为一种高科技含量、高精密度且用于复杂曲面零件加工的机床,具有制造周期短、工艺方法简单等优
12、点而得到广泛应用。 A/ B摆角龙门铣床由于多轴特点,在加工过程中存在大量斜角铣削过程。 A/ B摆角龙门铣床通常是五轴联动加工,机床一般由3个平动轴和2个回转轴组成,如图1所示。机床将两个旋转自由度均添至主轴刀具上,刀具运转包括两部分:一是刀触点的平动;二是刀轴的转动,也就是刀具姿态的变化。机床通过A轴、B轴与XYZ三直线轴之间的联动,可实现复杂航空结构件等大型零部件的加工。由于刀具姿态可以实时调整,因此可以避免刀具的干涉和碰撞,刀具相对于工件表面可以处于最有效的切削状态,提高了加工效率和加工精度11。图1 AB摆龙门铣床加工中心1.2 斜角切削模型由于A/ B摆角五轴龙门铣床的工作特点,斜
13、角铣削在其加工过程中不可避免。加之其常用铣刀刀刃结构比较复杂,更是加大了对该类机床加工稳定性研究的难度。在对复杂几何形状切削刃的加工研究中,通常的方法是将切削刃离散成无限小的微元刃12。因此,本文利用微元刃斜角切削模型来模拟A/ B摆角龙门铣床复杂铣刀铣削过程。微元刃斜角切削模型几何关系如图2所示,切削速度方向即X轴与工件的夹角为倾斜角s。 X轴垂直于切削刃并位于切削平面内;Y轴与切削刃重合;Z轴垂直于XY平面。XZYSnSon前刀面切削面图2 斜角切削的几何关系在图2中,剪切平面和XY平面之间的夹角被称为法向剪切角n,剪切下来的切屑以流屑角在前刀面上运动,流屑角从前刀面内垂直于切削刃矢量。切
14、屑与前刀面之间的摩擦力与流屑方向一致,Z轴和前刀面内的法向矢量之间的夹角被定义为法向前角n。在斜角切削中,力作用在三个方向上,如图3上所示,前刀面上的摩擦力F和垂直于前刀面的法向力Fn形成摩擦角为n的切削合力F,合力矢量F和法平面Pn之间有一投影锐角i,此投影与法向力Fn形成平面角n + n,这里n是X轴和F在Pn上投影之间的夹角,如图3下所示。PnFnFFnni+ n法平面前刀面切削刃法线nFnOXZFsYFini切削刃图3 斜角切削中的切削力和剪切角的关系由图2和图3可得:F Fsinn F sinisin (1)F Fntann Fn tan(n + n)cos (2)由Armarego
15、斜角切削参数求解的经验模型13,得到下面的几何关系:tan(n + n) cosntantan sinntan(3)24组合机床与自动化加工技术 第12期万方数据又已知tann (为摩擦系数),则n n + n (4)则式(2)为: tana tanncos (5)根据Armarego斜角切削参数求解的经验模型13和Stabler的经验切屑流动准则14,得到法向剪切角:tann Ahcosn1 Ahsinn(6)式中,为斜角切屑变形系数,是理想切削厚度与变形后的切削厚度的比,即:Ah hDhD A coscos (7)其中,A为直角切削的切削变形系数,可以通过直角切削试验获得。最后可得:tan
16、n Acoscosncos Acossinn(8)将式(3)、式(5)、式(8)联立起来,可以求得合力F和法向力Fn的平面角a、流屑角、法相剪切角n的大小,它们与铣刀几何参数法向前角n和螺旋角、摩擦系数有关15。在斜角切削中切削力与剪切角的关系中可以得到修正切向与径向切削力系数如下:Ktc ssinn cos(n n) + tanstansinncos2(n + n n) + tan2sin2n(9)Krc ssinncoss sin(n n)cos2(n + n n) + tan2sin2n(10)式中,s为斜角切削中的刃倾角。1.3 切削力模型将铣削切削刃以斜角切削方式离散,假设螺旋铣刀的
17、齿数为N、螺旋角为。沿铣刀轴线(Z轴)方向将铣刀分割成M个切削刃微元,由于铣刀螺旋角的存在,导致切削刃上的点将比刀具l端点滞后,在轴向切削深度(z)处的滞后角()可表示为16: ztanR (11)假设铣刀上的刀齿均匀分布,则其齿间p 2/ N ;假设第一个切削刃端点处的角位移为10 ,那么第j个刀齿上第l个切削刃微元处的瞬时径向接触角可表示为:jl 10 + (j 1)p + ldztanR (12)又因为切削厚度随着切削刃角度位置改变而变化,它是刀齿转角的函数,可近似表示为17:h(jl ftsinjl)式中, ft为每齿进给量。在刀具微元铣削刃上的切向、径向切削力分布如图4所示。根据瞬时
18、刚性力基本公式18,作用在刀齿j上厚度为dz的第l个切削刃微元的切向、径向力微元可表示为:dFtjl g(jl)(Ktch(jl) + Kte)dz (13)dFrjl g(jl)(Krch(jl) + Kre)dz (14)式中,Ktc、Krc分别为与剪切效应对应的切向和径向切削力系数,Kte、Kre是相应的刃口力系数。切削力系数和刃口力系数是工件材料在切削期间的屈服剪切应力、剪切角等之间的函数。一般而言,剪切作用所对应的切向力系数影响较大,而刃口力系数影响较小。g(jl)为单位阶跃函数用于表示当时切削刃微元是否参与切削。其定义为:g(jl) 1, st jl exg(jl) 0, jl e
19、x (15)式中, st 、 ex分别表示切入角与切出角。ZdzdFtjldFrjl图4 铣刀的微元切削力通过坐标变换,可得到作用在直角坐标系中切削力分量如下:dFxjl dFtjlcosjl dFrjlsinjl (16)dFyjl dFtjlsinjl dFrjlcosjl (17)通过沿轴向积分和对每个刀齿求和,可得到作用于整个铣刀上在进给、法线上的瞬时切削力。Fx Nj 1 Mi 1 dFtjlcos(jl) dFrjlsin(jl) (18)Fy Nj 1 Mi 1 dFtjlsin(jl) dFrjlcos(jl) (19)2 斜角切削加工颤振稳定域离散法预测模型完全离散法19是从
20、系统相应的直接积分格式出发,同步线性逼近系统状态项、时滞项和周期系数项,进而构造转移矩阵,使得计算加工参数构成的稳定边界的过程中所涉及的矩阵指数函数只依赖转速,因此有较高的计算效率。具有对称模态的二自由度铣削系统动力学方程可表示为:mt 00 mtx(t)y(t)( )+2mtn 00 2mtnx(t)y(t)( )+mt2n 00 mt2nx(t)y(t)( ) hxx(t) hxy(t) hyx(t) hyy(t)x(t)y(t)( )+hxx(t) hxy(t)hyx(t) hyy(t)x(t T)y(t T)( ) (20)式中,为阻尼比,n为固有频率,mt为刀具的模态质量,为轴向切深
21、,hxx(t)、hxy(t)、hyx(t)、hyy(t)为切削力系数。根据斜角切削模型得出的切向与径向切削力系数Ktc、Krc,可知道hxx(t)、hxy(t)、hyx(t)、hyy(t)与它们的关系如下:342017年12月 魏子淇,等:基于斜角切削模型的铣削加工稳定性研究万方数据hxx(t) Nj 1g(j(t)sin(j(t)Ktccos(j(t) + Krcsin(j(t)hxy(t) Nj 1g(j(t)cos(j(t)Ktccos(j(t) + Krcsin(j(t)hxy(t) Nj 1g(j(t)sin(j(t) Ktcsin(j(t) + Krccos(j(t)hyy(t)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 斜角 切削 模型 铣削 加工 稳定性 研究 魏子淇

限制150内