《平行四边形的性质与判定测试题.doc》由会员分享,可在线阅读,更多相关《平行四边形的性质与判定测试题.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .2014年平行四边形的性质与判定测试题参考答案与试题解析一选择题(共8小题)1下列说法中错误的是()A平行四边形的对角线互相平分B有两对邻角互补的四边形为平行四边形C对角线互相平分的四边形是平行四边形D一组对边平行,一组对角相等的四边形是平行四边形考点:平行四边形的判定与性质;平行线的性质专题:推理填空题分析:根据平行四边形的性质即可判断A;根据图形和已知不能推出另一组对边也平行,即可判断B;根据平行四边形的判定判断即可;根据平行线性质和已知推出ADBC,根据平行四边形的判定判断即可解答:解:A、根据平行四边形性质得出平行四边形的对角线互相平分,故本选项错误;B、A+D=180,同时B+
2、C=180,只能推出ABCD,不一定是平行四边形,故本选项正确;C、AC于BD交于O,OA=OC,OB=OD,四边形ABCD是平行四边形,故本选项错误;D、ABCD,B+C=180,B=D,C+D=180,ADBC,四边形ABCD是平行四边形,故本选项错误;故选B点评:本题考查了对平行线的性质和平行四边形的性质和判定的应用,能理解性质并应用性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目2如图,ABC中,AB=AC=15,D在BC边上,DEBA于点E,DFCA交AB于点F,那么四边形AFDE的周长是()A30B25C20D15考点:平行四边形的判定与性质分析:因为AB=AC,所
3、以ABC为等腰三角形,由DEAB,可证CDE为等腰三角形,同理BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长解答:解:AB=AC=15,B=C,由DFAC,得FDB=C=B,FD=FB,同理,得DE=EC四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=15+15=30故选A点评:本题利用了两直线平行,同位角相等和等边对等角及等角对等边来把四边形的周长转移到AB和ACH上求解的3如图所示,线段a、b、c的端点分别在直线l1、l2上,则下列说法中正确的是()A若l1l2,则a=bB若l1l2,则a=cC若ab,则a=bD若l1l2,且ab,则a=b考点:
4、平行四边形的判定与性质分析:根据平行四边形的判定方法:两组对边分别平行的四边形是平行四边形可判定出四边形ABCD是平行四边形,再根据平行四边形的性质可得a=b解答:解:l1l2,ab,四边形ABCD是平行四边形,a=b,故选:D点评:此题主要考查了平行四边形的性质与判定,关键是掌握平行四边形的判定方法与性质定理4如图,AB=CD,BF=ED,AE=CF,由这些条件能得出图中互相平行的线段共有()A1组B2组C3组D4组考点:平行四边形的判定与性质分析:根据已知利用全等三角形的判定及平行线的判定进行分析,从而得到答案解答:解:由AB=CD,BF=ED,AE=CF可推出BFCDEA,ABEDCF,
5、ABDCDB从而得到图中存在的平行线段有ABCD,AECF,ADBC,共三组,故选C点评:本题用到平行四边形的判定和性质,利用已知条件可求得三角形全等,进而求得对应角相等,两直线平行5如图,已知在ABCD中,对角线AC,BD相交于点O,点E、F是AC上两点,点E、F的位置只须满足条件()时,四边形DEBF是平行四边形A点E、F分别为OA、OC的中点BOE=OD,OF=OBCOE=OA,OF=OCDOEBD,OFBD考点:平行四边形的判定与性质分析:由于四边形ABCD是平行四边形,那么OB=OD,OA=OC,而点E、F分别为OA、OC的中点,易证OE=OF,那么两组对角线互相平分,故四边形DEB
6、F是平行四边形利用排除法可选正确答案解答:解:四边形ABCD是平行四边形,OB=OD,OA=OC,点E、F分别为OA、OC的中点,OE=OA,OF=OC,OE=OF,四边形DEBF是平行四边形故选A点评:本题考查了平行四边形的判定和性质,解题的关键是注意掌握两组对角线互相平分的四边形是平行四边形6如图,BAC=120,ADAC,BD=CD,则下列结论正确的是()AAD=ACBAB=ACCAB=2ACDAB=AC考点:含30度角的直角三角形;平行四边形的判定与性质分析:由题意作图延长AD到E,使DE=AD,连接BE、CE,证明四边形ABEC是平行四边形,AB=CE,在直角ACE中即可对四个选项求
7、解作出判断解答:解:延长AD到E,使DE=AD,连接BE、CE,则四边形ABEC是平行四边形,BAC=120,ADAC,BD=CDAEC=30则A中,故本选项错误;B中,故本选项错误;C中,故本选项正确;D中,故本选项错误故选C点评:本题考查了含30度角的直角三角形,本题从每个选项中假设成立来论证7如图,平行四边形ABCD中,ABC=60,E、F分别在CD、BC的延长线上,AEBD,EFBC,DF=2,则EF的长为()A2B2C4D4考点:勾股定理;直角三角形斜边上的中线;平行四边形的判定与性质分析:由平行四边形的性质及直角三角形的性质,推出CDF为等边三角形,再根据勾股定理解答即可解答:解:
8、四边形ABCD是平行四边形ABCD,DCF=60,又EFBC,CEF=30,CF=CE,又AEBD,AB=CD=DE,CF=CD,又DCF=60,CDF=DFC=60,CD=CF=DF=DE=2,EF=故选B点评:本题考查平行四边形的性质的运用解题关键是利用平行四边形的性质结合三角形性质来解决有关的计算和证明8下列说法正确的有()平行四边形的对角线相等;平行四边形的对边相等;平行四边形的对角线互相垂直;平行四边形的对角线互相平分;两组对边分别相等的四边形是平行四边形;一组对边平行而且另一组对边相等的四边形是平行四边形A4个B3个C2个D1个考点:平行四边形的判定与性质专题:常规题型分析:平行四
9、边形的对边相等,平行四边形的对角线互相平分,一组对边平行而且相等的四边形是平行四边形,以此为依据即可对此题作出判断解答:解:平行四边形的对角线互相平分,但对角线并不相等,也不互相垂直,所以错,对;平行四边形的对边相等,对;两组对边分别相等的四边形是平行四边形,对;一组对边平行而且相等的四边形是平行四边形,一组对边平行而且而另一组对边相等的四边形并不一定是平行四边形,比如等腰梯形,错所以正确的是,共有三个故选B点评:本题主要考查平行四边形的性质及判断问题,无论是证明还是选择题,都应熟练掌握二填空题(共8小题)9(2012XX二模)如图,已知等边ABC的边长为8,P是ABC内一点,PDAC,PEA
10、D,PFBC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=8考点:平行四边形的判定与性质;等边三角形的性质分析:作辅助线,根据平行四边形的判定和性质及等腰三角形的性质,可证PD+PE+PF=AB=8解答:解:过E点作EGPD,过D点作DHPF,PDAC,PEAD,PDGE,PEDG,四边形DGEP为平行四边形,EG=DP,PE=GD,又ABC是等边三角形,EGAC,BEG为等边三角形,EG=PD=GB,同理可证:DH=PF=AD,PD+PE+PF=BG+GD+AD=AB=8点评:此题主要考查平行四边形的判定和性质及等腰三角形的性质熟练掌握性质定理和判定定理是解题的关键10如图所示
11、,在ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形考点:平行四边形的判定与性质分析:根据ABCD及E,F分别为AB,DC的中点,可推出对边平行且相等的平行四边形有3个,加上ABCD,共有4个解答:解:在ABCD中,E,F分别为AB,DC的中点DF=CD=AE=EB,ABCD四边形AEFD,CFEB,DFBE是平行四边形,再加上ABCD本身,共有4个平行四边形4故答案为4点评:本题利用了平行四边形的性质和判定及中点的性质11如图,在ABCD中,E,F是对角线AC上的两点且AE=CF,在BE=DF;BEDF;AB=DE;四边形EBFD为平行四边形;SADE
12、=SABE;AF=CE这些结论中正确的是考点:平行四边形的判定与性质;全等三角形的判定与性质分析:连接BD交AC于O,过D作DMAC于M,过B作BNAC于N,推出OE=OF,得出平行四边形BEDF,求出BN=DM,即可求出各个选项解答:解:连接BD交AC于O,过D作DMAC于M,过B作BNAC于N,四边形ABCD是平行四边形,DO=BO,OA=OC,AE=CF,OE=OF,四边形BEDF是平行四边形,BE=DF,BEDF,正确;正确;正确;根据已知不能推出AB=DE,错误;BNAC,DMAC,BNO=DMO=90,在BNO和DMO中BNODMO(AAS),BN=DM,SADE=AEDM,SAB
13、E=AEBN,SADE=SABE,正确;AE=CF,AE+EF=CF+EF,AF=CE,正确;故答案为:点评:本题考查了全等三角形的性质和判定,平行四边形的性质和判定的综合运用,主要考查学生的推理能力和辨析能力12如图,已知梯形ABCD,ADBC,B+C=90,EF=10,E,F分别是AD,BC的中点,则BCAD=20考点:直角三角形斜边上的中线;平行四边形的判定与性质专题:计算题分析:做EMAB,ENCD,分别交BC于M、N,根据平行四边形的判定可得到四边形AEMB是平行四边形,四边形ED是平行四边形,再根据平行四边形的性质可推出AE=BM,ED=NC,利用直角三角形斜边上的中线定理可判定E
14、MN为直角三角形,再根据线段之间的关系可推出F点为线段MN的中点,从而不难推出EF与BCAD之间的数量关系,已知EF的长,则不难求解解答:证明:做EMAB,ENCD,分别交BC于M、NEMAB,ENCD,B=EMN,C=ENM,ADBC,四边形AEMB是平行四边形,四边形ED是平行四边形,AE=BM,ED=NC,B+C=90EMN+ENM=90,EMN为直角三角形,BF=FC,BM=AE,NC=ED,AE=ED,BM=NC,MF=FN,F点为线段MN的中点,MEN为直角三角形,EF=MN,MN=BCBMNC=BCAEED=BC(AE+ED)=BCAD,EF=(BCAD),EF=10,BCAD=
15、20,故答案为:20点评:此题主要考查平行四边形的判定与性质及直角三角形斜边上的中线的定理的综合运用13六边形ABCDEF中,ABDE,BCEF,CDFA,且AB=4,BC=5,CD=6,DE=7,那么,六边形ABCDEF的周长是33考点:平行四边形的判定与性质专题:计算题分析:连接AC,AE,BD,BF,根据,BCEF,CDFA,求证AFEBCD即可解答:解:连接AC,AE,BD,BF,ABDE,BCEF,CDFA,AFEBCD,BC=EF,CD=AF,EF=5,AF=6,六边形ABCDEF的周长是AB+BC+CD+DE+EF+AF=4+5+6+7+5+6=33故答案为:33点评:此题主要考
16、查平行四边形的判定与性质,难易程度适中,解答此题的关键是求证AEFBCD14如图,ABC中,如果AB=30,BC=24,AC=27,DNGMAB,EGDFBC,FMENAC,则图中阴影部分的三个三角形周长之和为81考点:平行四边形的判定与性质分析:设阴影部分的三个三角形的边的交点为O,由DNGMAB,EGDFBC,FMENAC,可得四边形CDON,DFBN,OFMN,AFMG,DGEO,OGEF,GEBM是平行四边形,继而可得图中阴影部分的三个三角形周长之和为:AB+BC+AC,则可求得答案解答:解:设阴影部分的三个三角形的边的交点为O,DNGMAB,EGDFBC,FMENAC,四边形CDON
17、,DFBN,OFMN,AFMG,DGEO,OGEF,GEBM是平行四边形,ON=CD,OD=,DN=BF,OF=MN,OM=BF,FM=AG,OE=DG,OG=EF,GE=BM,图中阴影部分的三个三角形周长之和为:AB+BC+AC=30+24+27=81故答案为:81点评:此题考查了平行四边形的判定与性质此题难度适中,注意掌握数形结合思想的应用15如图所示,木工师傅把曲尺的一边紧靠木板边缘,从曲尺的另一边上可以读出木板另一边缘的刻度,然后将曲尺移动到另一处(紧靠木板边缘),如果两次读数相同,说明木板两个边缘平行,其中道理是平行四边形的对边平行考点:平行四边形的判定与性质分析:由题意可得AB=C
18、D,ABCD,即可证得四边形ABCD是平行四边形,然后由平行四边形的对边平行,即可证得木板两个边缘平行解答:解:根据题意得:AB=CD,ABCD,四边形ABCD是平行四边形,ADBC故答案为:平行四边形的对边平行点评:此题考查了平行四边形的判定与性质注意有一组对边平行且相等的四边形是平行四边形,平行四边形的对边平行16等腰ABC底边上任意一点D,AB=AC=5cm,过D作DEAC交AB于E,DFAB交AC于F,则四边形AEDF的周长为10cm考点:平行四边形的判定与性质;等腰三角形的性质分析:根据平行线的性质可以得到1=C,2=B,再由AB=AC,可得B=C,进而得到1=B,2=C,根据等角对
19、等边可证出BE=ED,DF=FC,表示出四边形AEDF的周长由哪些线段相加,再进行等量代换即可解答:解:DEAC,DFAB,1=C,2=B,AB=AC,B=C,1=B,2=C,BE=ED,DF=FC,四边形AEDF的周长=AE+ED+DF+AF=AE+EB+CF+AF=AB+AC=10cm,故答案为:10cm点评:此题主要考查了等腰三角形的性质,关键是利用等角对等边证明BE=ED,DF=FC三解答题(共8小题)17(2006)如图,在平行四边形ABCD中,BF=DE求证:四边形AFCE是平行四边形考点:平行四边形的判定与性质专题:证明题分析:可由已知求证AF=CE,又有AFCE,根据一组对边平
20、行且相等的四边形是平行四边形,可得四边形AFCE是平行四边形解答:证明:四边形ABCD是平行四边形,ABCD,AB=CDBF=DE,AF=CE在四边形AFCE中,AFCE,四边形AFCE是平行四边形点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法18(2006黄冈)如图所示,DBAC,且DB=AC,E是AC的中点,求证:BC=DE考点:平行四边形的判定与性质专题:证明题分析:可根据一组对边平行且相等的四边形是平行四边形证明四边形DBCE是平行四边形,即可证明BC=DE解答:证明:E是AC的中点,EC=AC,又DB=AC,DB=EC又D
21、BEC,四边形DBCE是平行四边形BC=DE点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系19(2008)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F(1)求证:ABEDFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论考点:平行四边形的判定与性质专题:几何综合题分析:(1)可用ASA证明ABEDFE;(2)四边形ABDF是平行四边形,可用对角线互相平分的四边形是平行四边形证明解答:(1)证明:四
22、边形ABCD是平行四边形,ABCF1=2,3=4E是AD的中点,AE=DEABEDFE(2)解:四边形ABDF是平行四边形ABEDFE,AB=DF又ABDF四边形ABDF是平行四边形点评:此题主要考查平行四边形的判定和全等三角形的判定熟练掌握性质定理和判定定理是解题的关键平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系20(2009房山区一模)已知:如图,ADBC,ACBD于O,AD+BC=5,AC=3,AEBC于E求AE的长考点:平行四边形的判定与性质;平行线的性质;勾股定理专题:计算题分析:过点A作AFDB交CB延长线于F,通过辅助
23、线,将已知条件与未知量联系起来,此时,AE是直角三角形斜边上的高,而已知斜边和一直角边,先由勾股定理求出另一直角边,再由面积法就可以求出斜边上的高AE了解答:解:过点A作AFDB交CB的延长线于点F,(1分)ADBC,四边形AFBD是平行四边形FB=ADAD+BC=5,FC=FB+BC=AD+BC=5(2分)ACBD,FAAC(3分)在FAC中,FAC=90,AC=3,FC=5,AF=4(4分)AEBC于E,AFAC=FCAEAE=(5分)点评:当直接求解比较困难时,通常要作辅助线,将已知条件与未知量联系起来21(2009大兴区一模)已知:如图,在ABC中,BAD=ACB,ABC的平分线交AD
24、于E,AE=CF,连接EF求证:BC=AB+EF考点:平行四边形的判定与性质;全等三角形的判定与性质专题:证明题分析:过点F作FGBE,交BC于点G,根据角平分线的定义,得ABE=CBE再根据AAS证明FGCABE,所以CG=AB,FG=BE,从而得到四边形BGFE是平行四边形,根据平行四边形的对边相等得BG=EF,即BC=AB+EF得证解答:证明:过点F作FGBE,交BC于点G,BE平分ABC,ABE=CBEFGEB,FGC=CBE=ABE又BAD=ACB,AE=CF,FGCABECG=AB,FG=BE四边形BGFE是平行四边形BG=EF,BC=AB+EF点评:本题主要考查平行四边形的性质和
25、判定平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法22如图,ABC中,BD平分ABC,DFBC,EFAC,试问BF与CE相等吗?为什么?考点:平行四边形的判定与性质;平行线的性质;等腰三角形的判定与性质专题:探究型分析:相等,因为FBD=DBC=DBC=FBD,所以BF=FD,又因为四边形FECD是平行四边形(有两条对边互相平行),所以FD=CE,所以BF=CE解答:证明:BD平分ABC,FBD=EBD,DFBC,FDB=DBE,FBD=DBC=DBC=FBD,BF=FD,又DFBC,EFAC,四边形FECD是平行四边形(有两条对边互相平
26、行),FD=CE,BF=CE点评:本题考查了角平分线的定义、等腰三角形的判定和性质以及平行四边形的判定和性质,题目难度不大,但设计新颖23如图,在平行四边形ABCD中,BAD、ABC的平分线AF、BG分别与线段CD交于点F、G,AF与BG交于点E(1)求证:AFBG,DF=CG;(2)若AB=10,AD=6,AF=8,求FG和BG的长度考点:平行四边形的判定与性质;勾股定理专题:压轴题分析:(1)由在平行四边形ABCD中,BAD、ABC的平分线AF、BG分别与线段CD交于点F、G,易求得2BAF+2ABG=180,即可得AEB=90,证得AFBG,易证得ADF与BCG是等腰三角形,即可得AD=
27、DF,BC=CG,又由AD=BC,即可证得DF=CG;(2)由(1)易求得DF=CG=8,CD=AB=10,即可求得FG的长;过点B作BHAF交DC的延长线于点H,易证得四边形ABHF为平行四边形,即可得HBG是直角三角形,然后利用勾股定理,即可求得BG的长解答:(1)证明:AF平分BAD,DAF=BAF=BADBG平分ABC,ABG=CBG=ABC四边形ABCD平行四边形,ADBC,ABCD,AD=BC,BAD+ABC=180,即2BAF+2ABG=180,BAF+ABG=90AEB=180(BAF+ABG)=18090=90AFBG;ABCD,BAF=AFD,AFD=DAF,DF=AD,A
28、BCD,ABG=CGB,CBG=CGB,CG=BC,AD=BCDF=CG;(2)解:DF=AD=6,CG=DF=6CG+DF=12,四边形ABCD平行四边形,CD=AB=1010+FG=12,FG=2,过点B作BHAF交DC的延长线于点HGBH=AEB=90AFBH,ABFH,四边形ABHF为平行四边形BH=AF=8,FH=AB=10GH=FG+FH=2+10=12,在RtBHG中:BG=FG的长度为2,BG的长度为4点评:此题考查了平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及勾股定理等知识此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法24(201
29、3)在ABC中,AB=AC,点D在边BC所在的直线上,过点D作DFAC交直线AB于点F,DEAB交直线AC于点E(1)当点D在边BC上时,如图,求证:DE+DF=AC(2)当点D在边BC的延长线上时,如图;当点D在边BC的反向延长线上时,如图,请分别写出图、图中DE,DF,AC之间的数量关系,不需要证明(3)若AC=6,DE=4,则DF=2或10考点:平行四边形的判定与性质;全等三角形的判定与性质;等腰三角形的性质分析:(1)证明四边形AFDE是平行四边形,且DEC和BDF是等腰三角形即可证得;(2)与(1)的证明方法相同;(3)根据(1)(2)中的结论直接求解解答:解:(1)证明:DFAC,DEAB,四边形AFDE是平行四边形AF=DE,DFAC,FDB=C又AB=AC,B=C,FDB=BDF=BFDE+DF=AB=AC;(2)图中:AC+DF=DE图中:AC+DE=DF(3)当如图的情况,DF=ACDE=64=2;当如图的情况,DF=AC+DE=6+4=10故答案是:2或10点评:本题考查平行四边形的判定与性质以及等腰三角形的判定,是一个基础题. .word.
限制150内