《初中函数知识点总结归纳.doc》由会员分享,可在线阅读,更多相关《初中函数知识点总结归纳.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- .函数知识点总结(掌握函数的定义、性质和图像)一正比例函数和一次函数1、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) k不为零 x指数为1 b取零当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0 直线从左向右是向上的 k0 直线与y轴的正半轴相交 b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b0,b0 2
2、、k0,b0 3、k0,b0 4、k04、直线y=kxb(k0)与坐标轴的交点(1)直线y=kx与x轴、y轴的交点都是(0,0);(2)直线y=kxb与x轴交点坐标为与 y轴交点坐标为(0,b)5、用待定系数法确定函数解析式的一般步骤:1根据条件写出含有待定系数的函数关系式;2将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;3解方程得出未知系数的值;4将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.6、两条直线交点坐标的求法: 方法:联立方程组求x、y 例题:两直线yx+6 与y2x-4交于点P,求P点的坐标?7、直线y=k1x+b1与y=k
3、2x+b2的位置关系1两条直线平行:k1=k2且b1b22两直线相交:k1k23两直线重合:k1=k2且b1=b2平行于轴或重合的直线记作.特别地,轴记作直线8、正比例函数与一次函数图象之间的关系一次函数y=kxb的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到当b0时,向上平移;当b0或ax+b0时,图象分别位于第一、三象限,同一个象限,y随x的增大而减小;当k0时,函数在x0上同为减函数;k0时,函数在x0上同为增函数。 定义域为x0;值域为y0。 3.因为在y=k/x(k0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4
4、. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,那么S1S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x即第一三,二四象限角平分线,对称中心是坐标原点。 6.假设设正比例函数y=mx与反比例函数y=n/x交于A、B两点m、n同号,那么A B两点关于原点对称。7.设在平面有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,那么n2 +4km不小于0。 k/x=mx+n,即mx2+nx-k=08.反比例函数y=k/x的渐近线:x轴与y轴。 9.反比例函数关于正比例函
5、数y=x,y=-x轴对称,并且关于原点中心对称. (第5点的同义不同表述)10.反比例上一点m向x、y轴分别做垂线,交于q、w,那么矩形mwqoo为原点的面积为|k| 11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。 12.|k|越大,反比例函数的图象离坐标轴的距离越远。三二次函数二次函数是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般式(图像上三点或三对、的值,通常选择一般式.)y=ax2+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b2/4a) ; 顶点式(图
6、像的顶点或对称轴,通常选择顶点式.)y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为-m,k或h,k对称轴为x=-m或x=h,有时题目会指出让你用配方法把一般式化成顶点式; 交点式(图像与轴的交点坐标、,通常选用交点式)y=a(x-x1)(x-x2) 仅限于与x轴有交点Ax1,0和 Bx2,0的抛物线 ; 抛物线的三要素:开口方向、对称轴、顶点顶点抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b2/4a ) ,当-b/2a=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。开口二次项系数a决定抛物线的开口方向和大小。
7、 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,那么抛物线的开口越小。决定对称轴位置的因素一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时即ab0,对称轴在y轴左;当a与b异号时即ab0,对称轴在y轴右。左同右异c的大小决定抛物线与轴交点的位置.当时,抛物线与轴有且只有一个交点0,:,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴.直线与抛物线的交点1轴与抛物线得交点为(0, ).2与轴平行的直线与抛物线有且只有一个交点(,).3抛物线与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点抛物线与轴相交;有一个交点顶点在轴上抛物线与轴相切;没有交点抛物线与轴相离.4平行于轴的直线与抛物线的交点同3一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,那么横坐标是的两个实数根.5一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点.6抛物线与轴两交点之间的距离:假设抛物线与轴两交点为,由于、是方程的两个根,故- . 可修编.
限制150内