高考一轮复习函数的单调性与最值.doc
《高考一轮复习函数的单调性与最值.doc》由会员分享,可在线阅读,更多相关《高考一轮复习函数的单调性与最值.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .第2讲函数的单调性与最值【2015年高考会这样考】1考查求函数单调性和最值的基本方法2利用函数的单调性求单调区间3利用函数的单调性求最值和参数的取值X围【复习指导】本讲复习首先回扣课本,从“数”与“形”两个角度来把握函数的单调性和最值的概念,复习中重点掌握:(1)函数单调性的判断及其应用;(2)求函数最值的各种基本方法;对常见题型的解法要熟练掌握基础梳理1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数当x1x2时,
2、都有f(x1)f(x2),那么就说函数f (x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件.对于任意xI,都有f(x)M;对于任意xI,都有f(x)M;存在x0I,使得f(x0)M存在x0I,使得f(x0)M.结论M为最大值M为最小值一个防X函数的单调性是对某个区间而言的,所以要受到区间的限制例如函数y分别在(,0),(0,)内都是单调递减的,但不能说它在整个定义
3、域即(,0)(0,)内单调递减,只能分开写,即函数的单调减区间为(,0)和(0,),不能用“”连接两种形式设任意x1,x2a,b且x1x2,那么0f(x)在a,b上是增函数;0f(x)在a,b上是减函数(x1x2)f(x1)f(x2)0f(x)在a,b上是增函数;(x1x2)f(x1)f(x2)0f(x)在a,b上是减函数两条结论(1)闭区间上的连续函数一定存在最大值和最小值当函数在闭区间上单调时最值一定在端点取到(2)开区间上的“单峰”函数一定存在最大(小)值四种方法函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时
4、为减函数(3)导数法:利用导数研究函数的单调性(4)图象法:利用图象研究函数的单调性双基自测1设f(x)为奇函数,且在(,0)内是减函数,f(2)0,则xf(x)0的解集为()A(2,0)(2,) B(,2)(0,2)C(,2)(2,) D(2,0)(0,2)答案C2(2011XX)已知函数f(x)ex1,g(x)x24x3.若有f(a)g(b),则b的取值X围为()A2,2 B(2,2)C1,3 D(1,3)解析函数f(x)的值域是(1,),要使得f(a)g(b),必须使得x24x31.即x24x20,解得2x2.答案B3(2012XX一中质检)已知f(x)为R上的减函数,则满足f1,不等式
5、等价于解得1x1,且x0.答案C4(2011XX)函数f(x)log5(2x1)的单调增区间是_解析要使ylog5(2x1)有意义,则2x10,即x,而ylog5u为(0,)上的增函数,当x时,u2x1也为增函数,故原函数的单调增区间是.答案5若x0,则x的最小值为_解析x0,则x2 2 当且仅当x,即x 时,等号成立,因此x的最小值为2 .答案2 考向一函数的单调性的判断【例1】试讨论函数f(x)的单调性审题视点 可采用定义法或导数法判断解法一f(x)的定义域为R,在定义域内任取x1x2,都有f(x1)f(x2),其中x1x20,x10,x10.当x1,x2(1,1)时,即|x1|1,|x2
6、|1,|x1x2|1,则x1x21,1x1x20,f(x1)f(x2)0,f(x1)f(x2),f(x)为增函数当x1,x2(,1或1,)时,1x1x20,f(x1)f(x2),f(x)为减函数综上所述,f(x)在1,1上是增函数,在(,1和1,)上是减函数法二f(x),由f(x)0解得1x1.由f(x)0解得x1或x1,f(x)在1,1上是增函数,在(,1和1,)上是减函数 判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等【训练1】 讨论函数f(x)(a0)在(1,1)上的单调性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 一轮 复习 函数 调性
限制150内