中考数学专题复习教案圆.doc
《中考数学专题复习教案圆.doc》由会员分享,可在线阅读,更多相关《中考数学专题复习教案圆.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. . 圆综合复习教学目标】1、回顾、思考本章所学的知识及思想方法,并能用自己的方式进行梳理,使所学知识系统化2、进一步丰富对圆及相关结论的认识,并能有条理地、清晰地阐明自己的观点3、通过复习课的教学,感受归纳的思想方法,养成反思的习惯【重点难点】圆的有关概念和性质的应用【课堂活动】一、圆的有关概念和性质二知识点详解(一)、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的
2、圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。(二)、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;(三)、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;(四)、圆与圆的位置关系外离(图1) 无交点 ;外切(图
3、2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ;(五)、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中,弧弧(六)、圆心角定理圆心角定理:同圆或等
4、圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧(七)、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中,是直角三角形
5、或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。(八)、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中,四边形是内接四边形(九)、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后
6、一个。三例题讲析例1 如图,在半径为5cm的O中,圆心O到弦AB的距离为3cm,则弦AB的长是( )A4cm B6cm C8cm D10cm解题思路:在一个圆中,若知圆的半径为R,弦长为a,圆心到此弦的距离为d,根据垂径定理,有R2=d2+()2,所以三个量知道两个,就可求出第三个答案C例2、如图,A、B、C、D是O上的三点,BAC=30,则BOC的大小是( )A、60 B、45 C、30 D、15解题思路:运用圆周角与圆心角的关系定理,答案:A例3如图,点O是ABC的内切圆的圆心,若BAC=80,则BOC=( )A130 B100 C50 D65解题思路:此题解题的关键是弄清三角形内切圆的圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 教案
限制150内