离散数学树知识点总结.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《离散数学树知识点总结.doc》由会员分享,可在线阅读,更多相关《离散数学树知识点总结.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .第六章 树一、掌握基本概念 树的子树是互不相交的,树可以为空(空树) 非空的树中,只有一个结点是没有前趋的,那就是根。非空树只有一个树根,是一对多的关系。叶子结点、结点的度、树的度、结点的层次、树的深度、树的四种表示方法二、二叉树的定义、特点、五种基本形态二叉树是有序树,左右子树不能互相颠倒二叉树中结点的最大度为2,但不一定都是2。三、二叉树的性质要掌握性质1:二叉树的第i层上至多有2 i-1(i 1)个结点。性质2:深度为k的二叉树中至多2k-1个结点。性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0n21。 证明:1)结点总数 n=n0+n1+n2 (
2、n1是度为1的结点数) 2)进入分支总数m(每个结点唯一分支进入) n=m+1 3)m个分支是由非叶子结点射出 m=n1+2n2性质4:具有n个结点的完全二叉树的深度k为log2n+1四、满二叉树和完全二叉树的区别是什么? 满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。深度为k的二叉树,最少有k个结点,最多有2k-1深度为k的完全二叉树,最少有2k-1-1+1个结点,最多有2k-1五、二叉树的存储结构(可以通过下标找结点的左右孩子) 1.顺序存储结构适用于满二叉树和完全二叉树。(其缺点是必须把其他二叉树补成完全二叉树,从上到下,从左到右依次存储在顺序存储空间里,会造成空间浪费)2.
3、二叉链表存储结构(其优点是找左孩子和右孩子方便,但缺点是找父节点麻烦)lchild Datarchild (重点) 3. 三叉链表存储结构 不仅找其左、右孩子很方便,而且找其双亲也方便六、遍历的概念是什么?七、二叉树的遍历有三种:前序(先序、先根)遍历、中序(中序、中根)遍历、后序(后序、后根)遍历 1.给出一棵二叉树,要会二叉树的三种遍历2.给出两种遍历(必须有中序遍历),要求会画该二叉树。八、了解引入线索(中序、先序、后序)二叉树的原因是什么?九、会在二叉树上画先序线索化、中序线索化、后序线索化。在线索二叉树的格式中,可以找到任意结点的直接后继。(错)在线索二叉树中,如果某结点的右孩子为空
4、,那么可以找到该结点的直接后继。(对)在线索二叉树中,如果某结点的左孩子为空,那么可以找到该结点的直接前趋。(对)十、树.森林和二叉树的相互转换 树转换成二叉树后,转换后的二叉树根的右子树为空。十一、森林的遍历(只有先序遍历和后序遍历)先序遍历一棵树,相当于先序遍历该树所对应的二叉树。后序遍历一棵树,相当于中序遍历该树所对应的二叉树。十二、赫夫曼树(又称最优二叉树或哈夫曼树)、赫夫曼树编码 1. 赫夫曼树中,权越大的叶子离根越近,其形态不唯一,但是WPL带权路径长度一定是最小。2.一定要会构造哈夫曼树,在构造好的哈夫曼树上会构造哈夫曼编码。(认真看题目要求)第6章算法设计题1已知二叉树中的结点
5、类型用BiTNode表示,被定义描述为:Typedef struct BiTNode TElemType data ; struct BiTNode * LChild , *RChild; BiTNode,*BiTree;其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写出求一棵二叉树高度的算法。 Int BTreeHeight(BiTree BT) if (BT=NULL) return 0; else h1=BTreeHeight(BT-LChild); h2=BTreeHeight(BT-RChild); if (h1h2) return(h1+1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 知识点 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内