变量间的相关关系讲义.doc
《变量间的相关关系讲义.doc》由会员分享,可在线阅读,更多相关《变量间的相关关系讲义.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .变量间的相关关系讲义一、根底知识梳理知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系如:函数关系,或非确定性关系。当自变量取值一定时,因变量也确定,那么为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系不确定性的关系,如果所有样本点都落在某一直线附近,那么变量之间具有线性相
2、关关系,相关关系只说明两个变量在数量上的关系,不说明他们之间的因果关系,也可能是一种伴随关系。点睛:两个变量相关关系与函数关系的区别和联系一样点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一
3、个图,通常称这种图为变量之间的散点图。2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,应考虑数据分
4、布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,那么两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,那么表示的关系是线性相关,如果两个变量统计数据的散点图呈现如以下图所示的情况,那么两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系。点睛:散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点坐标点的分布形态反映变量统计关系的一种图形。特点是能直观表现出影响因素和预测对象之间的总体关系趋势。优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系。散点图不仅可传递变量
5、间关系类型的信息,也能反映变量间关系的明确程度知识点3:回归直线1回归直线的定义如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。2回归直线的特征如果能够求出这条回归直线的方程简称回归方程,那么我们就可以比拟清楚的了解对应两个变量之间的相关性,就像平均数可以作为一个变量的数据的代表一样,这条直线也可以作为两个变量之间具有相关关系的代表。3回归直线方程一般地,设x与y是具有相关关系的两个变量,且相应n组观测值的n个点xi,yii=1,2,n大致分布在一条直线的附近,求在整体上与这n个点最接近的一条直线,设此直线方程为,这里的y在上方加
6、上“是为了区分实际值y,表示当x取值xi,y相应的观察值yi而直线上对应于xi,的纵坐标是点睛:1散点图中的点整体上分布在一条直线附近时,可以应用线性回归分析的方法分析数据;2回归直线是反映:“从整体上看,各点与此直线的距离的和最小的一条直线,它反映了具有线性相关关系的两个变量之间的规律;3我们可以通过回归直线方程,由一个变量的值来推测另一个变量的值,解决生活中的实际问题;这种方法称为回归方法知识点4:回归系数公式及相关问题1.最小二乘法:求回归直线的关键是如何用数学的方法刻画从整体上看,各点与此直线的距离最小,假设我们已经得到两个具有线性相关关系的变量的一组数据:。当自变量取=1,2,n时,
7、可以得到=1,2,n,它与实际收集到的之间的偏差是=1,2,n这样用n个偏差的和来刻画“各点与此直线的整体偏差是比拟适宜的。总的偏差为,偏差有正有负,易抵消,所以采用绝对值,由于带绝对值计算不方便所以换成平方,现在的问题就归结为:当,b取什么值时Q最小,即点到直线y=bx+a的整体距离最小其中, 这种通过求式的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫最小二乘法。2.回归直线方程的求法先判断变量是否线性相关假设线性相关,利用公式计算出a,b利用回归方程对生活实际问题进展分析与预测注意:线性回归直线方程中x的系数是b,常数项是a,与直线的斜截式不大一样,如
8、果散点图中的点分布从整体上看不在任何一条直线附近,这时求出的线性回归方程实用价值不大。点睛:线性回归方程:一般地,设有个观察数据如下:当a,b使取得最小值时,就称为拟合这对数据的线性回归方程,该方程所表示的直线称为回归直线知识点5:线性回归分析思想在实际中的应用教材中利用回归直线对年龄与脂肪的关系做了上述分析,这种分析方法叫做线性回归分析。利用这种分析方法可以对生活中的很多问题进展分析与预测,求线性回归方程的步骤:计算平均数;计算的积,求;计算;将结果代入公式求;用 求;写出回归方程注意:对一组数据进展线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数a,b的计算公式,算出由于计算量
9、较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误。知识点6:利用相关系数判断线性相关程度最小二乘法求出回归直线的方程后,可以对上面两个变量的关系进展分析与预测,如图前两个是线性相关,可以求回归方程,后两个是非线性相关,直线不能很好地反映图中两个变量之间的关系。显然求回归直线的方程是没有意义的。有些变量线性相关,有些非线性相关,衡量变量的线性相关程度引入一个量:相关系数注意它的符号:当时,x,y正相关,当时,x,y负相关,统计学认为:对于r,假设那么负相关很强,假设,那么正相关很强假设,那么相关性一般, 假设,那么相关性较弱,点睛:相关系数的绝对值越大,线性相关关系就越强。二、常考
10、题型例解易-知识点1例1:以下两个变量之间是相关关系的是A、圆的面积与半径B、球的体积与半径 C、角度与它的正弦值 D、一个考生的数学成绩与物理成绩思路分析:由题意知A表示圆的面积与半径之间的关系S=r2,B表示球的体积与半径之间的关系C表示角度与它的正弦值y=sin,前面所说的都是确定的函数关系,相关关系不是确定的函数关系,应选D解:D点拨:此题考察变量间的相关关系,判断两个变量间的关系还是函数关系还是相关关系的关键是判断两个变量之间的关系是否是确定的,假设确定的那么是函数关系;假设不确定,那么是相关关系例2:名师出高徒可以解释为教师的水平越高,学生的水平也越高,那么教师与学生的水平之间有何
11、种关系呢?你能举出更多的描述生活中两变量相关关系的成语与俗语吗?至少写两个。思路分析:名师出高徒的意思是有名的教师一定能教出高明的徒弟,高水平教师有很大趋势教出高水平的学生,实际学生成绩的好坏还与很多因素有关,如学生的天赋,学生的努力,学习的环境等,所以它们之间的关系带有不确定性即为相关关系。解:教师的水平与学生的水平之间具有相关关系生活中描述两个变量之间的相关关系的成语或俗语还有:老子英雄儿好汉,强将手下无弱兵,虎父无犬子2021XX高考中 知识点2例3.对变量x、y有观测数据xi,yii=1,2,10,得散点图1;对变量u,v有观测数据ui,vii=1,2,10,得散点图2由这两个散点图可
12、以判断A、变量x与y正相关,u与v正相关 B、变量x与y正相关,u与v负相关 C、变量x与y负相关,u与v正相关 D、变量x与y负相关,u与v负相关 思路分析:由题图1可知,y随x的增大而减小,各点整体呈递减趋势,x与y负相关,由题图2可知,u随v的增大而增大,各点整体呈递增趋势,u与v正相关解:C点拨:此题考察散点图,是通过读图来解决问题,考察读图能力,是一个根底题,此题可以粗略的反响两个变量之间的关系,是不是线性相关,是正相关还是负相关易知识点3例4:5个学生的数学和物理成绩如下表:由散点图判断它们是否相关,是正相关还是负相关?思路分析:分别以数学和物理成绩作为横纵坐标建立直角坐标系,描点
13、画出散点图,然后根据散点图判断。解:以x轴表示数学成绩,y轴表示物理成绩可得到相应的散点图,如下图由散点图可知,两者之间具有相关关系,且为正相关例5:下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由思路分析:根据表中数据画出散点图,观察数据是否集中,判断变量之间关系,再利用最小二乘法计算系数a,b写出线性回归方程解:在直角坐标系中画出数据的散点图,直观判断散点在一条直线附近,故具有线性相关关系计算相应的数据之和:,将它们代入式计算得,所以,所求线性回归方程为知识点4例6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变量 相关 关系 讲义
限制150内