数学建模-图与网络模型及方法.doc





《数学建模-图与网络模型及方法.doc》由会员分享,可在线阅读,更多相关《数学建模-图与网络模型及方法.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .第五章 图与网络模型及方法1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用
2、连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为
3、从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。图与网络是运筹学(Operations Research)中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。我们首先通过一些例子来了解网络优化问题。例1 最短路问题(SPPshortest pa
4、th problem)一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。例2公路连接问题某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?例3 指派问题(assignment problem)一家公司经理准备安排名员工去完成项任务,每人一项。由于各员
5、工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?例4 中国邮递员问题(CPPchinese postman problem)一名邮递员负责投递某个街区的。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。例5 旅行商问题(TSPtraveling salesman problem)一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历
6、史十分悠久,通常称之为旅行商问题。例6 运输问题(transportation problem)某种原材料有个产地,现在需要将原材料从产地运往个使用这些原材料的工厂。假定个产地的产量和家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?上述问题有两个共同的特点:一是它们的目的都是从若干可能的安排或方案中寻求某种意义下的最优安排或方案,数学上把这种问题称为最优化或优化(optimization)问题;二是它们都易于用图形的形式直观地描述和表达,数学上把这种与图相关的结构称为网络(network)。与图和网络相关的最优化问题就是网络最优化或称网络优
7、化 (netwok optimization)问题。所以上面例子中介绍的问题都是网络优化问题。由于多数网络优化问题是以网络上的流(flow)为研究的对象,因此网络优化又常常被称为网络流(network flows)或网络流规划等。下面首先简要介绍图与网络的一些基本概念。2 图与网络的基本概念2.1 无向图一个无向图(undirected graph)是由一个非空有限集合和中某些元素的无序对集合构成的二元组,记为。其中称为图的顶点集(vertex set)或节点集(node set), 中的每一个元素称为该图的一个顶点(vertex)或节点(node);称为图的边集(edge set),中的每一
8、个元素(即中某两个元素的无序对)记为或,被称为该图的一条从到的边(edge)。当边时,称为边的端点,并称与相邻(adjacent);边称为与顶点关联(incident)。如果某两条边至少有一个公共端点,则称这两条边在图中相邻。边上赋权的无向图称为赋权无向图或无向网络(undirected network)。我们对图和网络不作严格区分,因为任何图总是可以赋权的。一个图称为有限图,如果它的顶点集和边集都有限。图的顶点数用符号或表示,边数用或表示。当讨论的图只有一个时,总是用来表示这个图。从而在图论符号中我们常略去字母,例如,分别用和代替和。端点重合为一点的边称为环(loop)。一个图称为简单图(s
9、imple graph),如果它既没有环也没有两条边连接同一对顶点。2.2 有向图定义一个有向图(directed graph或 digraph)是由一个非空有限集合和中某些元素的有序对集合构成的二元组,记为。其中称为图的顶点集或节点集, 中的每一个元素称为该图的一个顶点或节点;称为图的弧集(arc set),中的每一个元素(即中某两个元素的有序对)记为或,被称为该图的一条从到的弧(arc)。当弧时,称为的尾(tail),为的头(head),并称弧为的出弧(outgoing arc),为的入弧(ining arc)。对应于每个有向图,可以在相同顶点集上作一个图,使得对于的每条弧,有一条有相同端
10、点的边与之相对应。这个图称为的基础图。反之,给定任意图,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为的一个定向图。以下若未指明“有向图”三字,“图”字皆指无向图。2.3完全图、二分图每一对不同的顶点都有一条边相连的简单图称为完全图(plete graph)。个顶点的完全图记为。若,(这里表示集合中的元素个数),中无相邻顶点对,中亦然,则称为二分图(bipartite graph);特别地,若,则,则称为完全二分图,记成。 2.4 子图图叫做图的子图(subgraph),记作,如果,。若是的子图,则称为的母图。的支撑子图(spanning subgr
11、aph,又成生成子图)是指满足的子图。2.5 顶点的度设,中与关联的边数(每个环算作两条边)称为的度(degree),记作。若是奇数,称是奇顶点(odd point);是偶数,称是偶顶点(even point)。关于顶点的度,我们有如下结果:(i)(ii) 任意一个图的奇顶点的个数是偶数。2.6 图与网络的数据结构网络优化研究的是网络上的各种优化模型与算法为了在计算机上实现网络优化的算法,首先我们必须有一种方法(即数据结构)在计算机上来描述图与网络。一般来说,算法的好坏与网络的具体表示方法,以及中间结果的操作方案是有关系的。这里我们介绍计算机上用来描述图与网络的5种常用表示方法:邻接矩阵表示法
12、、关联矩阵表示法、弧表表示法、邻接表表示法和星形表示法。在下面数据结构的讨论中,我们首先假设是一个简单有向图,并假设中的顶点用自然数表示或编号,中的弧用自然数表示或编号。对于有多重边或无向网络的情况,我们只是在讨论完简单有向图的表示方法之后,给出一些说明。(i)邻接矩阵表示法邻接矩阵表示法是将图以邻接矩阵(adjacency matrix)的形式存储在计算机中。图的邻接矩阵是如下定义的:是一个的矩阵,即,也就是说,如果两节点之间有一条弧,则邻接矩阵中对应的元素为1;否则为0。可以看出,这种表示法非常简单、直接。但是,在邻接矩阵的所有个元素中,只有个为非零元。如果网络比较稀疏,这种表示法浪费大量
13、的存储空间,从而增加了在网络中查找弧的时间。例7 对于右图所示的图,可以用邻接矩阵表示为同样,对于网络中的权,也可以用类似邻接矩阵的矩阵表示。只是此时一条弧所对应的元素不再是1,而是相应的权而已。如果网络中每条弧赋有多种权,则可以用多个矩阵表示这些权。(ii)关联矩阵表示法关联矩阵表示法是将图以关联矩阵(incidence matrix)的形式存储在计算机中图的关联矩阵是如下定义的:是一个的矩阵,即,也就是说,在关联矩阵中,每行对应于图的一个节点,每列对应于图的一条弧。如果一个节点是一条弧的起点,则关联矩阵中对应的元素为1;如果一个节点是一条弧的终点,则关联矩阵中对应的元素为;如果一个节点与一
14、条弧不关联,则关联矩阵中对应的元素为0。对于简单图,关联矩阵每列只含有两个非零元(一个,一个)。可以看出,这种表示法也非常简单、直接。但是,在关联矩阵的所有个元素中,只有个为非零元。如果网络比较稀疏,这种表示法也会浪费大量的存储空间。但由于关联矩阵有许多特别重要的理论性质,因此它在网络优化中是非常重要的概念。例8 对于例7所示的图,如果关联矩阵中每列对应弧的顺序为(1,2),(1,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4),则关联矩阵表示为同样,对于网络中的权,也可以通过对关联矩阵的扩展来表示。例如,如果网络中每条弧有一个权,我们可以把关联矩阵增加一行,把每一
15、条弧所对应的权存储在增加的行中。如果网络中每条弧赋有多个权,我们可以把关联矩阵增加相应的行数,把每一条弧所对应的权存储在增加的行中。(iii)弧表示法弧表表示法将图以弧表(arc list)的形式存储在计算机中。所谓图的弧表,也就是图的弧集合中的所有有序对。弧表表示法直接列出所有弧的起点和终点,共需个存储单元,因此当网络比较稀疏时比较方便。此外,对于网络图中每条弧上的权,也要对应地用额外的存储单元表示。例如,例7所示的图,假设弧(1,2),(1,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4)上的权分别为8,9,6,4,0,3,6和7,则弧表表示如下:起点11234
16、455终点23423534权89640367为了便于检索,一般按照起点、终点的字典序顺序存储弧表,如上面的弧表就是按照这样的顺序存储的。(iv)邻接表表示法邻接表表示法将图以邻接表(adjacency lists)的形式存储在计算机中。所谓图的邻接表,也就是图的所有节点的邻接表的集合;而对每个节点,它的邻接表就是它的所有出弧。邻接表表示法就是对图的每个节点,用一个单向链表列出从该节点出发的所有弧,链表中每个单元对应于一条出弧。为了记录弧上的权,链表中每个单元除列出弧的另一个端点外,还可以包含弧上的权等作为数据域。图的整个邻接表可以用一个指针数组表示。例如,例7所示的图,邻接表表示为这是一个5维
17、指针数组,每一维(上面表示法中的每一行)对应于一个节点的邻接表,如第1行对应于第1个节点的邻接表(即第1个节点的所有出弧)。每个指针单元的第1个数据域表示弧的另一个端点(弧的头),后面的数据域表示对应弧上的权。如第1行中的“2”表示弧的另一个端点为2(即弧为(1,2),“8”表示对应弧(1,2)上的权为8;“3”表示弧的另一个端点为3(即弧为(1,3)),“9”表示对应弧(1,3)上的权为9。又如,第5行说明节点5出发的弧有(5,3)、(5,4),他们对应的权分别为6和7。对于有向图,一般用表示节点的邻接表,即节点的所有出弧构成的集合或链表(实际上只需要列出弧的另一个端点,即弧的头)。例如上面
18、例子,等。这种记法我们在本书后面将会经常用到。(v)星形表示法星形(star)表示法的思想与邻接表表示法的思想有一定的相似之处。对每个节点,它也是记录从该节点出发的所有弧,但它不是采用单向链表而是采用一个单一的数组表示。也就是说,在该数组中首先存放从节点1出发的所有弧,然后接着存放从节点2出发的所有孤,依此类推,最后存放从节点出发的所有孤。对每条弧,要依次存放其起点、终点、权的数值等有关信息。这实际上相当于对所有弧给出了一个顺序和编号,只是从同一节点出发的弧的顺序可以任意排列。此外,为了能够快速检索从每个节点出发的所有弧,我们一般还用一个数组记录每个节点出发的弧的起始地址(即弧的编号)。在这种
19、表示法中,可以快速检索从每个节点出发的所有弧,这种星形表示法称为前向星形(forward star)表示法。例如,在例7所示的图中,仍然假设弧(1,2),(l,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4)上的权分别为8,9,6,4,0,3,6和7。此时该网络图可以用前向星形表示法表示如下: 节点对应的出弧的起始地址编号数组(记为)节点号123456起始地址134679记录弧信息的数组弧编号12345678起点11234455终点23423534权89640367在数组中,其元素个数比图的节点数多1(即),且一定有,。对于节点,其对应的出弧存放在弧信息数组的位置区
20、间为,如果,则节点没有出弧。这种表示法与弧表表示法也非常相似,“记录弧信息的数组”实际上相当于有序存放的“弧表”。只是在前向星形表示法中,弧被编号后有序存放,并增加一个数组()记录每个节点出发的弧的起始编号。前向星形表示法有利于快速检索每个节点的所有出弧,但不能快速检索每个节点的所有入弧。为了能够快速检索每个节点的所有入孤,可以采用反向星形(reverse star)表示法:首先存放进入节点1的所有孤,然后接着存放进入节点2的所有弧,依此类推,最后存放进入节点的所有孤。对每条弧,仍然依次存放其起点、终点、权的数值等有关信息。同样,为了能够快速检索从每个节点的所有入弧,我们一般还用一个数组记录每
21、个节点的入孤的起始地址(即弧的编号)。例如,例7所示的图,可以用反向星形表示法表示为如下形式:节点对应的入弧的起始地址编号数组(记为)节点号123456起始地址113689记录弧信息的数组弧编号12345678终点22333445起点31145524权48906763如果既希望快速检索每个节点的所有出弧,也希望快速检索每个节点的所有入弧,则可以综合采用前向和反向星形表示法。当然,将孤信息存放两次是没有必要的,可以只用一个数组(trace)记录一条弧在两种表示法中的对应关系即可。例如,可以在采用前向星形表示法的基础上,加上上面介绍的数组和如下的数组即可。这相当于一种紧凑的双向星形表示法如下所示:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 网络 模型 方法

限制150内