高等数学公式、定理最全版.doc
《高等数学公式、定理最全版.doc》由会员分享,可在线阅读,更多相关《高等数学公式、定理最全版.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .高等数学公式导数公式:根本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:诱导公式: 函数角Asincostgctg-sincos-tg-ctg90-cossinctgtg90+cos-sin-ctg-tg180-sin-cos-tg-ctg180+-sin-costgctg270-cos-sinctgtg270+-cossin-ctg-tg360-sincos-tg-ctg360+sincostgctg和差角公式: 和差化积公式:倍角公式:半角公式:正弦定理:余弦定理:反三角函数性质:高阶导数公式莱布尼兹Leibniz公式:中值定理与导数应用:曲率:定积分的近
2、似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程高等数学定理大全第一章函数与
3、极限 1、函数的有界性在定义域内有f(x)K1那么函数f(x)在定义域上有下界,K1为下界;如果有f(x)K2,那么有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一*)数列xn不能同时收敛于两个不同的极限。 定理(收敛数列的有界*)如果数列xn收敛,那么数列xn一定有界。 如果数列xn无界,那么数列xn一定发散;但如果数列xn有界,却不能断定数列xn一定收敛,例如数列1,-1,1,-1,(-1)n+1该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列xn收敛于
4、a,那么它的任一子数列也收敛于a.如果数列xn有两个子数列收敛于不同的极限,那么数列xn是发散的,如数列1,-1,1,-1,(-1)n+1中子数列x2k-1收敛于1,xnk收敛于-1,xn却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中00(或A0(或f(x)0),反之也成立。 函数f(x)当xx0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),假设不相等那么limf(x)不存在。 一般的说,如果lim(x)f(x)=c,那么直线y=c是函数y=f(x)的图形水平渐近线。如果lim(xx0)f(x)=,那么直线x
5、=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法那么定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)F2(x),而limF1(x)=a,limF2(x)=b,那么ab. 5、极限存在准那么两个重要极限lim(x0)(sinx/x)=1;lim(x)(1+1/x)x=1.夹逼准那么如果数列xn、yn、zn满足以下条件:ynxnzn且limyn=a,limzn=a,那么limxn=a,对于函数该准那么也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如
6、果函数f(x)当xx0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(xx0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(xx0)f(x)不存在;3、虽在x=x0有定义且lim(xx0)f(x)存在,但lim(xx0)f(x)f(x0)时那么称函数在x0处不连续或连续。 如果x0是函数f(x)的连续点,但左极限及右极限都存在,那么称x0为函数f(x)的第一类连续点(左右极限相等者称可去连续点,不相等者称为跳跃连续点)。非第一类连续点的任何连续点都称为第二类连续点(无穷连续点和震荡连续点)。 定理
7、有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。 定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy=y|y=f(x),xIx上单调增加或减少且连续。反三角函数在他们的定义域内都是连续的。 定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。如果函数在开区间内连续或函数在闭区间上有连续点,那么函数在该区间上就不一定有最大值和最小值。 定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即mf(x)M.定理(零点定理)设函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号(即f(a)f(b)0
8、),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点(a函数在该点处连续;函数f(x)在点x0处连续在该点可导。即函数在某点连续是函数在该点可导的必要条件而不是充分条件。 3、原函数可导那么反函数也可导,且反函数的导数是原函数导数的倒数。 4、函数f(x)在点x0处可微=函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。 第三章中值定理与导数的应用 1、定理(罗尔定理):如果函数f(x)在闭区间a,b上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点(ab,使的函数fx在该点的导数等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 公式 定理 最全版
限制150内