二元二次方程组的解法.doc
《二元二次方程组的解法.doc》由会员分享,可在线阅读,更多相关《二元二次方程组的解法.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .二元二次方程的解法一、内容综述:1解二元二次方程组的根本思想和方法 解二元二次方程组的根本思想是“转化,这种转化包含“消元和 “降次将二元转化为一元是消元,将二次转化为一次是降次,这是转化的根本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。 2二元二次方程组通常按照两个方程的组成分为“二一型和“二二型,又分别成为型和型。 “二一型是由一个二元二次方程和一个二元一次方程组成的方程组;“二二型是由两个二元二次方程组成的方程组。 “二一型方程组的解法1代入消元法即代入法 代入法是解“二一型方程组的一般方法,具体步骤是: 把二元一次方程中的一个未知数用另一个未知数的代数式
2、表示; 把这个代数式代入二元二次方程,得到一个一元二次方程; 解这个一元二次方程,求得一个未知数的值; 把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解的问题; 所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 2逆用根与系数的关系 对“二一型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解。 注意
3、:不要丢掉一个解。 此方法是解“二一型方程组的一种特殊方法,它适用于解“和积形式的方程组。 以上两种是比拟常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的构造特征,灵活选用恰当的方法。 注意:1解一元二次方程、分式方程和无理方程的知识都可以运用于解“二一型方程组。2要防止漏解和增解的错误。 “二二型方程组的解法(i) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二一型方程组,解得这两个“二一型方程组,所得的解都是原方程组的解。 (ii) 当方程组中两个二元二次方程都可以分解为两
4、个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 注意:“二一型方程组最多有两个解,“二二型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 二、例题分析:例1解方程组分析:仔细观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 解法一:由(1)得y=8-x.(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. 把x1=2代入(
5、3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。 解法二:根据根与系数的关系可知:x, y是一元二次方程, z2-8z+12=0的两个根,解这个方程,得z1=2, z2=6. 所以原方程组的解是。 注意:“二一型方程组中的两个方程,如果是以两数和与两数积的形式给出的,这样的方程组用根与系数的关系解是很方便的。但要特别注意最前方程组解的写法,不要漏掉。 例2解方程是x与2y的和,方程是x与2y的积, x与2y是方程z2-4z-21=0的两个根解此方程得:z1=-3,z2=7, 原方程的解是 说明:此题属于特殊型的方程组,可用一元二次方程的根与系数的关系来解. 此外型的
6、二元二次方程组,也都可以通过变形用简便的特殊解法. 例3解(1)解法一(用代入法) 由得:y= 把代入得: x2-+4()2+x-2=0. 整理得:4x2-21x+27=0 x1=3 x2=. 把x=3代入得:y=1 把x=代入得:y=. 原方程组的解为: 解法二(用因式分解法) 方程(1)可化为(x-2y)2+(x-2y)-2=0 即(x-2y+2)(x-2y-1)=0 x-2y+2=0 或x-2y-1=0 原方程组可化为: 分别解得: 说明:此题为I型二元二次方程组,一般可用代入法求解,当求出一个未知数的值代入求另一个未知数的值时,一定要代入到二元一次方程中去求,假设针对二元二次方程的特点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 二次 方程组 解法
限制150内