相似三角形复习.doc
《相似三角形复习.doc》由会员分享,可在线阅读,更多相关《相似三角形复习.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .相似三角形及其性质一、课堂讲解知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。如ABC与A/B/C/相似,记作: ABCA/B/C/ 。相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。注意:(1)相似比是有顺序的。(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。(3)顺序性:相似三角形的相似比是有顺序的,若ABCA/B/C/,相似比为k,则A/B/C/与ABC的相似比是知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。(2)两个等边三角形一定相似
2、,两个等腰三角形不一定相似。(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。知识点3、平行线分线段成比例定理1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。把线段AB分成两条线段AC和BC,使AC2=ABBC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。 2. 比例性质:3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l1l2l3, A D l1 B E l2C F l3 可得等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.
3、A D E B C由DEBC可得:.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质相似三角形的对应角相等相似三角形的对应边成比例相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比相似三角形周长的比等于相似比相似三角形面积的比等于相似比的平方 知识点5:相似三角形的周长和面积(1)相
4、似三角形的对应高相等,对应边的比相等。(2)相似三角形对应高的比、对应中线的比、对应角平分线的比等于相似比。(3)相似三角形的周长比等于相似比;(4)相似三角形的面积比等于相似比的平方三、课堂演练考点一:平行线分线段成比例1、如图,已知直线abc,直线m、n 与a、b、c分别交于点A、C、E、B、D、F,AC 4,CE 6,BD 3,则BF ( )A 7B 7.5C 8D8.52、如图,已知ABC,AB=AC=1,A=36,ABC的平分线BD交AC于点D,则AD的长是abcABCDEFmn3、如图所示:ABC中,DEBC,AD5,BD10,AE3,则CE的值为( )A9B6C3D44如图,点F
5、是ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( )A B C D5如图,在ABC中,AB=AC,A=36,BD平分ABC交AC于点D,若AC=2,则AD的长是()A B CD考点二:相似三角形的性质1、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N下列结论:APEAME;PM+PN=AC;PE2+PF2=PO2;POFBNF;当PMNAMP时,点P是AB的中点其中正确的结论有()A5个B4个C3个D2个2、如图,RtABC中,ACB=90,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 复习
限制150内