复变函数及积分变换重要知识点归纳.doc
《复变函数及积分变换重要知识点归纳.doc》由会员分享,可在线阅读,更多相关《复变函数及积分变换重要知识点归纳.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .复变函数复习重点 (一)复数的概念1.复数的概念:,是实数, .注:一般两个复数不比拟大小,但其模为实数有大小.2.复数的表示1模:;2幅角:在时,矢量与轴正向的夹角,记为多值函数;主值是位于中的幅角。3与之间的关系如下: 当; 当;4三角表示:,其中;注:中间一定是“+号。5指数表示:,其中。 (二) 复数的运算1.加减法:假设,那么2.乘除法:1假设,那么;。2假设, 那么;3.乘幂与方根1) 假设,那么。2) 假设,那么有个相异的值三复变函数1复变函数:,在几何上可以看作把平面上的一个点集变到平面上的一个点集的映射.2复初等函数1指数函数:,在平面处处可导,处处解析;且。注:是以为
2、周期的周期函数。注意与实函数不同3) 对数函数: 多值函数;主值:。单值函数的每一个主值分支在除去原点及负实轴的平面内处处解析,且;注:负复数也有对数存在。与实函数不同3乘幂与幂函数:;注:在除去原点及负实轴的平面内处处解析,且。4三角函数:在平面内解析,且注:有界性不再成立;与实函数不同4) 双曲函数 ;奇函数,是偶函数。在平面内解析,且。四解析函数的概念1复变函数的导数1点可导:=;2区域可导:在区域内点点可导。2解析函数的概念1点解析:在及其的邻域内可导,称在点解析;2区域解析:在区域内每一点解析,称在区域内解析;3假设在点不解析,称为的奇点;3解析函数的运算法那么:解析函数的和、差、积
3、、商除分母为零的点仍为解析函数;解析函数的复合函数仍为解析函数;五函数可导与解析的充要条件1函数可导的充要条件:在可导和在可微,且在 处满足条件: 此时,有。2函数解析的充要条件:在区域内解析和在在内可微,且满足条件:;此时。注意: 假设在区域具有一阶连续偏导数,那么在区域内是可微的。因此在使用充要条件证明时,只要能说明具有一阶连续偏导且满足条件时,函数一定是可导或解析的。3函数可导与解析的判别方法1利用定义 题目要求用定义,如第二章习题12利用充要条件 函数以形式给出,如第二章习题23利用可导或解析函数的四那么运算定理。函数是以的形式给出,如第二章习题3六复变函数积分的概念与性质1 复变函数
4、积分的概念:,是光滑曲线。注:复变函数的积分实际是复平面上的线积分。2 复变函数积分的性质1) 与的方向相反;2) 是常数;3 假设曲线由与连接而成,那么。3复变函数积分的一般计算法1化为线积分:;常用于理论证明2参数方法:设曲线:,其中对应曲线的起点,对应曲线的终点,那么 。七关于复变函数积分的重要定理与结论1柯西古萨根本定理:设在单连域内解析,为内任一闭曲线,那么2复合闭路定理: 设在多连域内解析,为内任意一条简单闭曲线,是内的简单闭曲线,它们互不包含互不相交,并且以为边界的区域全含于,那么 其中与均取正向;,其中由及所组成的复合闭路。3闭路变形原理 : 一个在区域内的解析函数沿闭曲线的积
5、分,不因在内作连续变形而改变它的值,只要在变形过程中不经过使不解析的奇点。4解析函数沿非闭曲线的积分: 设在单连域内解析,为在内的一个原函数,那么 说明:解析函数沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。5。 柯西积分公式:设在区域内解析,为内任一正向简单闭曲线,的内部完全属于,为内任意一点,那么6高阶导数公式:解析函数的导数仍为解析函数,它的阶导数为其中为的解析区域内围绕的任何一条正向简单闭曲线,而且它的内部完全属于。7重要结论:。 是包含的任意正向简单闭曲线8复变函数积分的计算方法1假设在区域内处处不解析,用一般积分法2设在区域内解析,l 是内一条正向简单闭曲线,那么由柯西
6、古萨定理,l 是内的一条非闭曲线,对应曲线的起点和终点,那么有3设在区域内不解析l 曲线内仅有一个奇点:在内解析l 曲线内有多于一个奇点:内只有一个奇点 或:留数根本定理l 假设被积函数不能表示成,那么须改用第五章留数定理来计算。八解析函数与调和函数的关系1调和函数的概念:假设二元实函数在内有二阶连续偏导数且满足,为内的调和函数。2解析函数与调和函数的关系l 解析函数的实部与虚部都是调和函数,并称虚部为实部的共轭调和函数。l 两个调和函数与构成的函数不一定是解析函数;但是假设如果满足柯西黎曼方程,那么一定是解析函数。3解析函数的实部或虚部,求解析函数的方法。1偏微分法:假设实部,利用条件,得;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 积分 变换 重要 知识点 归纳
限制150内