直线与圆知识点总结及例题.doc
《直线与圆知识点总结及例题.doc》由会员分享,可在线阅读,更多相关《直线与圆知识点总结及例题.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;(2)倾斜角的X围。如(1)直线的倾斜角的X围是_(答:);倾斜角的取值X围是0180.倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示.倾斜角是90的直线没有斜率.(2)过点的直线的倾斜角的X围值的X围是_(答:)2、直线的斜率:(1)定义:倾斜角不是90的直线,它的倾斜角的正切值叫这条直线的斜率,即tan(90);倾斜角为90的直线没有斜率;(2)
2、斜率公式:经过两点、的直线的斜率为;(3)直线的方向向量,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线:。如(1) 两条直线钭率相等是这两条直线平行的_条件(答:既不充分也不必要);(2)实数满足 (),则的最大值、最小值分别为_(答:)3、直线的方程:(1)点斜式:已知直线过点斜率为,则直线方程为,它不包括垂直于轴的直线。直线的斜率时,直线方程为;当直线的斜率不存在时,不能用点斜式求它的方程,这时的直线方程为.(2)斜截式:已知直线在轴上的截距为和斜率,则直线方程为,它不包括垂直于轴的直线。(3)两点式:已知直线经过、两点,则直线方程为,它不包括垂直于坐标轴的直线。若要包含倾
3、斜角为或的直线,两点式应变为的形式.(4)截距式:已知直线在轴和轴上的截距为,则直线方程为,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成(A,B不同时为0)的形式。如(1)经过点(2,1)且方向向量为=(1,)的直线的点斜式方程是_(答:);(2)直线,不管怎样变化恒过点_(答:);(3)若曲线与有两个公共点,则的取值X围是_(答:)提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;
4、直线两截距绝对值相等直线的斜率为或直线过原点。如过点,且纵横截距的绝对值相等的直线共有_条(答:3)4.设直线方程的一些常用技巧:(1)知直线纵截距,常设其方程为;(2)知直线横截距,常设其方程为(它不适用于斜率为0的直线);(3)知直线过点,当斜率存在时,常设其方程为,当斜率不存在时,则其方程为;(4)与直线平行的直线可表示为;(5)与直线垂直的直线可表示为.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。5、点到直线的距离及两平行直线间的距离:(1)点到直线的距离;(2)两平行线间的距离为。6、直线与直线的位置关系:(1)平行(斜率)且(在轴上截距);(2)相交;
5、(3)重合且。提醒:(1)、仅是两直线平行、相交、重合的充分不必要条件!为什么?(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;(3)直线与直线垂直。如(1)设直线和,当_时;当_时;当_时与相交;当_时与重合(答:1;3);(2)已知直线的方程为,则与平行,且过点(1,3)的直线方程是_(答:);(3)两条直线与相交于第一象限,则实数的取值X围是_(答:);(4)设分别是ABC中A、B、C所对边的边长,则直线与的位置关系是_(答:垂直);(5)已知点是直线上一点,是直线外一点,则方程0所表示的直线与的关系是_(答:平行)
6、;(6)直线过点(,),且被两平行直线和所截得的线段长为9,则直线的方程是_(答:)7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90,另一条直线的倾斜角为0,两直线互相垂直8、对称(中心对称和轴对称)问题代入法:如(1)已知点与点关于轴对称,点P与点N关于轴对称,点Q与点P关于直线对称,则点Q的坐标为_(答:);(3)点(,)关于直线的对称点为(2,7),则的方程是_(答:);(4)已知一束光线通过点(,),经直线:3x4y+4=0反射。如果反射光线通
7、过点(,15),则反射光线所在直线的方程是_(答:);(5)已知ABC顶点A(3,),边上的中线所在直线的方程为6x+10y59=0,B的平分线所在的方程为x4y+10=0,求边所在的直线方程(答:);(6)直线2xy4=0上有一点,它与两定点(4,1)、(3,4)的距离之差最大,则的坐标是_(答:(5,6);(7)已知轴,C(2,1),周长的最小值为_(答:)。提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。9.(1)直线过定点。如直线(3m+4)x+(5-2m)y+7m-6=0,不论m取何值恒过定点(-1,2)(2)直线系方程(1)与已知直线Ax+By+C=0平行的直线的设法:
8、Ax+By+m=0 (mC)(2) 与已知直线Ax+By+C=0垂直的直线的设法: Bx-Ay+m=0 (3)经过直线x+y+=0,x+y+=0交点的直线设法:x+y+(x+y+)=0(为参数,不包括)(3)关于对称 (1)点关于点对称(中点坐标公式)(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行)(3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、kk= -1二个方程)(4)线关于线对称(求交点,转化为点关于线对称)10、圆的方程:圆的标准方程:。圆的一般方程:,特别提醒:只有当时,方程才表示圆心为,半径为的圆(二元二次方程表示圆的充要条件是什么? (且且);圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 知识点 总结 例题
限制150内