连续梁按弹性理论五跨梁内力系数及弯矩分配法.doc
《连续梁按弹性理论五跨梁内力系数及弯矩分配法.doc》由会员分享,可在线阅读,更多相关《连续梁按弹性理论五跨梁内力系数及弯矩分配法.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .附表25:等截面等跨连续梁在常用荷载作用下按弹性分析的内力系数五跨梁。弯矩分配法弯矩分配法计算连续梁和刚架及举例一、名词解释弯矩分配法在数学上属于逐次逼近法,但在力学上属于准确法的X畴,主要适用于连续梁和刚架的计算。在弯矩分配法中不需要解联立方程,而且是直接得出杆端弯矩。由于计算简便,弯矩分配法在建筑构造设计计算中应用很广。一线刚度i杆件横截面的抗弯刚度EI被杆件的长度去除就是杆件的线刚度i:(a) 当远端B为固定支座时,对于A点处,AB杆的转动刚度;(b) 当远端B为铰支座时,对于A点处,AB杆的转动刚度;(c) 当远端B为滑动支座时,对于A点处,AB杆的转动刚度;(d) 当远端B为自
2、由端时,对于A点处,AB杆的转动刚度。连续梁和刚架的所有中间支座在计算转动刚度时均视为固定支座。二转动刚度S转动刚度表示靠近节点的杆件端部对该节点转动的对抗能力。杆端的转动刚度以S表示,等于杆端产生单位转角需要施加的力矩,。施力端只能发生转角,不能发生线位移。中的第一个角标A是表示A端,第二个角标B是表示杆的远端是B端。表示AB杆在A端的转动刚度。三分配系数各杆A端所承当的弯矩与各杆A端的转动刚度成正比。称为分配系数,如表示杆AB在A端的分配系数。它表示AB杆的A端在节点诸杆中,承当对抗外力矩的百分比,等于杆AB的转动刚度与交于A点各杆的转动刚度之和的比值。总之,加于节点A的外力矩,按各杆的分
3、配系数分配于各杆的A端。四传递系数C称为传递系数。传递系数表示当近端有转角即近端产生弯矩时,远端弯矩与近端弯矩的比值。因此一般可由近端弯矩乘以传递系数C得出远端弯矩。当远端为固定的边支座或为非边支座;当远端为滑动边支座;当远端为铰支边支座。节点A作用的外力矩M,按各杆的分配系数分配给各杆的近端;远端弯矩等于近端弯矩乘以传递系数。五杆端弯矩弯矩分配法解题过程中所指的杆端弯矩是所有作用于杆端的中间计算过程的最后总的效果。计算杆端弯矩的目的,是因为杆端弯矩一旦求出,那么每相邻节点之间的“单跨梁将可以作为一根静定的脱离体取出来进展该杆的内力分析。其上作用的荷载有外荷载,每一杆端截面上一般有一个剪力和一
4、个弯矩,两端共有二个剪力和二个弯矩。这两个弯矩就是两端的杆端弯矩,既然它们已经求出,那么余下的两个剪力可由两个静力平衡方程解出。六近端弯矩和远端弯矩二、弯矩分配法的思路在求杆端弯矩时,其主要的目标是:1由于节点上有两根或多根杆件聚集,因此需确定每一根杆在维持节点不转动平衡过程中所作出的奉献。这需要用到分配系数以及与分配系数有关的转动刚度S、线刚度i、截面刚度EI等值。2影响节点产生转动的力矩大小及方向。这需要涉及到单跨梁的固端弯矩,它的含义是:将每相邻节点之间的杆件视为一根两端支座为固定支座或一端固定一端铰支的单跨梁,这样的梁在各种外荷载作用下的杆端弯矩叫做固端弯矩。两端铰支的单跨梁无固端弯矩
5、,即两端铰支的单跨梁的两铰支端的固端弯矩为零。只有固定端才有固端弯矩,铰支端的固端弯矩为零(单跨梁)。固定端不允许转动所以产生固端弯矩,而铰支端允许转动不产生固端弯矩。三、弯矩分配法的运算步骤连续梁或刚架弯矩分配法运算过程:1求各杆件梁或柱的线刚度i、杆端梁端或柱端转动刚度S和分配系数对于刚架,参加分配系数计算的不仅有梁,还有柱。2根据各个“单跨梁或柱的荷载情况和支座特征查表求出各“单跨杆件在杆端的固端弯矩。这里需注意的是固端弯矩是带符号的,可以用“左负右正四个字来帮助记忆。即对每一“单跨梁而言,左端的取负值或零,右端的取正值或零。当“单跨的边支座为铰支座时,它不能抵抗杆件的转动,所以边支座为
6、铰支座时的=0;但对于所有非边支座,那么一律视为固定端支座。3将与同一支座相连接的各杆的固端弯矩取代数和后反号按分配系数分配到与支座相连的各杆杆端。这一步的注意点是将固端弯矩代数和反号再分配。4将分配得到的弯矩视该节点各杆远端支座特征决定是否向远端传递。这种分配、传递将可能进展屡次。这种次数只要进展的足够,从理论上讲将可以到达任意要求的准确度。但是工程实践上那么只要进展23个循环即可满足正式构造设计的要求。5将上面四步运算之后的与同一节点相连的每根杆件杆端的固端弯矩、分配弯矩、传递弯矩分别求代数和,即为各杆的杆端弯矩。这一步的注意点是与同一支座相连的各杆的杆端弯矩代数和必定为零,否那么说明计算
7、上有错,或尚需进一步分配、传递。 静定构造的内力只按静力平衡条件即可确定,其值与构造的材料性质和截面尺寸无关。超静定构造的全部反力和内力如只按静力平衡条件那么无法确定,还必须同时考虑变形协调条件即各局部的变形必须符合原构造的联接条件和支承条件才能得出确定的解答,故超静定构造的内力状态与构造的材料性质和截面尺寸有关。在荷载作用下,超静定构造的内力只与各杆刚度的相比照值有关,而与其绝对值无关;在温度改变、支座移动等因素影响下,超静定构造的内力那么与各杆刚度的绝对值有关,并且一般是与各杆刚度的绝对值成正比的。 对非构造专业来说,特别是对建筑学专业,不可能花大量的精力去从事对超静定构造的矩阵分析,因此
8、弯矩分配法这样简明适用的方法就更有它的实际意义。一方面,弯矩分配法可以满足对一般正式构造设计的要求;另一方面,可以使建筑师加强对构造的概念设计。所以其优越性是显而易见的。例8-1 图示一连续梁,用弯矩分配法作弯矩图。解:1求分配系数a. 杆AB和杆BC的线刚度相等。b. 转动刚度:c. 分配系数:d. 校核:+=1,分配系数写在节点B上面的方框内。2求固端弯矩,把梁看成两根独立的单跨梁。查表:AB跨属表编号,而BC跨属表编号。将结果写在相应杆端的下方。在节点B,BA梁与BC梁在B端的固端弯矩代数和为分配并传递,将节点B的固端弯矩代数和反号得被分配的弯矩为kNm,此弯矩按分配系数分配于两杆的B端
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 连续 弹性 理论 五跨梁 内力 系数 弯矩 分配
限制150内