概率论及数理统计习题集及答案.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《概率论及数理统计习题集及答案.doc》由会员分享,可在线阅读,更多相关《概率论及数理统计习题集及答案.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .?概率论与数理统计?作业集及答案第1章概率论的根本概念1 .1 随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A:出现奇数点,那么A=;B:数点大于2,那么B= . (2) 一枚硬币连丢2次, A:第一次出现正面,那么A= ;B:两次出现同一面,那么= ; C:至少有一次出现正面,那么C= .1 .2 随机事件的运算1. 设A、B、C为三事件,用A、B、C的运算关系表示以下各事件:(1)A、B、C都不发生表示为:.(2)A与B都发生,而C不发
2、生表示为:.(3)A与B都不发生,而C发生表示为:.(4)A、B、C中最多二个发生表示为:.(5)A、B、C中至少二个发生表示为:.(6)A、B、C中不多于一个发生表示为:.2. 设:那么 1,2,3 , 4= ,5= 。1 .3 概率的定义和性质1. ,那么 (1), (2)()= , (3)=.2. 那么=.1 .4古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.1 .5 条件概率与乘法公式1丢甲、乙两颗均匀
3、的骰子,点数之和为7, 那么其中一颗为1的概率是 。2. 那么 。1 .6 全概率公式1. 有10个签,其中2个“中,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中的概率一样。2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。1 .7 贝叶斯公式1 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求1该厂产品能出厂的概率,2任取一出厂产品, 求未经调试的概率。2 将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为0.02,B被误收作A的概率为0.01,信息A与信
4、息B传递的频繁程度为3 : 2,假设接收站收到的信息是A,问原发信息是A的概率是多少?1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L与R为通路用T表示的概率。 A B L R C D 3. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求以下概率: (1) 恰好命中一次,(2) 至少命中一次。第1章作业答案1 .11:1; 22:1; 2正正,正反正正,反反正正,正反,反正。1 .21: (1) ;(2) ;(3) ;(4);(5) ;(6) 或;2: (1);(2)
5、;(3);4或 ;5。1 .31: (1) =0.3,(2)= 0.2,(3) = 0.7.2:)=0.4.1 .41:(1),(2)(,(3)1-(.2: .1 .51:. 2/6;2: 1/4。1 .61:设A表示第一人“中,那么 P(A) = 2/10设B表示第二人“中,那么 P(B) = P(A)P(B|A) + P()P(B|) =两人抽“中的概率一样, 与先后次序无关。2: 随机地取一盒,那么每一盒取到的概率都是0.5,所求概率为:p = 0.5 0.4 + 0.5 0.5 = 0.451 .71:194% 270/94; 2: 0.993;1 .8.1: 用A,B,C,D表示开关
6、闭合,于是 T = ABCD, 从而,由概率的性质及A,B,C,D的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) P(A)P(B)P(C)P(D)2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38;(2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章 随机变量及其分布2.1 随机变量的概念,离散型随机变量1 一盒中有编号为1,2,3,4,5的五个球,从中随机地取3个,用X表示取出的3个球中的最大., 试写出X的分布律.2 某射手
7、有5发子弹,每次命中率是0.4,一次接一次地射击,直到命中为止或子弹用尽为止,用X表示射击的次数, 试写出X的分布律。2.2分布和泊松分布1 某程控交换机在一分钟内接到用户的呼叫次数X是服从=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率;(3)每分钟最多有1次呼叫的概率;2 设随机变量X有分布律: X 2 3 , Y(X), 试求: p 0.4 0.61P(X=2,Y2); (2)P(Y2); (3) Y2, 求X=2 的概率。2.3贝努里分布1 一办公室内有5台计算机,调查说明在任一时刻每台计算机被使用的概率为0.6,计算机是否被使用相互独立,问在同一时刻
8、(1) 恰有2台计算机被使用的概率是多少?(2) 至少有3台计算机被使用的概率是多少?(3) 至多有3台计算机被使用的概率是多少?(4) 至少有1台计算机被使用的概率是多少?2 设每次射击命中率为0.2,问至少必须进展多少次独立射击,才能使至少击中一次的概率不小于0.9 ?2.4随机变量的分布函数1设随机变量X的分布函数是: F(x) = (1) 求 P(X0 ); P;P(X1),(2) 写出X的分布律。2 设随机变量X的分布函数是:F(x) = , 求1常数A, (2) P.2.5连续型随机变量1 设连续型随机变量的密度函数为:1求常数的值;2求X的分布函数F(x),画出F(x) 的图形,
9、3用二种方法计算 P(- 0.5X0.5).2.6均匀分布和指数分布1设随机变量K在区间 (0, 5) 上服从均匀分布, 求方程 4+ 4Kx + K + 2 = 0有实根的概率。2 假设打一次所用时间单位:分X服从的指数分布,如某人正好在你前面走进亭,试求你等待:1超过10分钟的概率;210分钟 到20分钟的概率。2.7正态分布1 随机变量XN (3, 4), (1) 求 P(2X5) , P(- 42),P(X3);(2) 确定c,使得 P(Xc) = P(Xc)。2 某产品的质量指标X服从正态分布,=160,假设要求P(120X200)0.80,试问最多取多大?2.8随机变量函数的分布1
10、设随机变量的分布律为; X 0 1 2 p 0.3 0.4 0.3Y = 2X 1, 求随机变量的分布律。2设随机变量的密度函数为:,;求随机变量Y的密度函数。3. 设随机变量服从0, 1上的均匀分布,求随机变量Y的密度函数。第2章作业答案2.1 1: X 3 4 5 p 0.1 0.3 0.62:X 1 2 3 4 5 p 0.4 0.60.4 0.60.60.4 0.60.60.60.4 0.60.60.60.612.2 1: (1) P(X = 1) = P(X1) P(X2) = 0.981684 0.908422 = 0.073262,(2) P(X1) = 0.981684,(3)
11、 P(X1) = 1 - P(X2) = 1 0.908422 = 0.091578。 2:(1) 由乘法公式:P(X=2,Y2) = P(X=2) P(Y2 | X=2)= 0.4 ()= 22由全概率公式:P(Y2) = P(X=2) P(Y2 | X=2) + P(X=3) P(Y2 | X=3)= 0.45 + 0.6= 0.27067 + 0.25391 = 0.52458 3由贝叶斯公式:P(X=2|Y2)=2.3 1: 设X表示在同一时刻被使用的台数,那么 X B(5, 0.6),(1) P( X = 2 ) = (2) P(X 3 ) = (3) P(X 3 ) = 1 - (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 论及 数理统计 习题集 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内