空间向量及立体几何知识点归纳总结.doc
《空间向量及立体几何知识点归纳总结.doc》由会员分享,可在线阅读,更多相关《空间向量及立体几何知识点归纳总结.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .空间向量与立体几何知识点归纳总结一知识要点。1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。注:1向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。2向量具有平移不变性2. 空间向量的运算。定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下如图。;运算律:加法交换律:加法结合律:数乘分配律:运算法那么:三角形法那么、平行四边形法那么、平行六面体法那么3. 共线向量。1如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。2共线向量定理:空间任意两个向量、,/存在实数,使。3三点共线:A、B、C三点共线 4
2、与共线的单位向量为4. 共面向量 1定义:一般地,能平移到同一平面内的向量叫做共面向量。说明:空间任意的两向量都是共面的。2共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数使。3四点共面:假设A、B、C、P四点共面 5. 空间向量根本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。假设三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。推论:设是不共面的四点,那么对空间任一点,都存在唯一的三个有序实数,使。6. 空间向量的直角坐标系: 1空间直角坐标系中的坐标:在空间直角坐标系中,对空间任一点,存在唯一的
3、有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标。注:点Ax,y,z关于x轴的的对称点为(x,-y,-z),关于xoy平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。在y轴上的点设为(0,y,0),在平面yOz中的点设为(0,y,z)2假设空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示。空间中任一向量=x,y,z3空间向量的直角坐标运算律:假设,那么, , 。假设,那么。一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。定比分点公式:假设,那么点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 立体几何 知识点 归纳 总结
限制150内