高一数学教案.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高一数学教案.doc》由会员分享,可在线阅读,更多相关《高一数学教案.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,助你起航,欢迎收藏和关注!高一数学教案 高一数学教案 作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!下面是小编精心整理的高一数学教案,欢迎大家分享。 高一数学教案1 教学目标 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理垂直的问题; 4、掌握向量垂直的条件、 教学重难点 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学过程 1、平面向量数量积(内积)的定义:已知两个非零向量a与
2、b,它们的夹角是, 则数量|a|b|cosq叫a与b的数量积,记作ab,即有ab=|a|b|cosq,(0)、 并规定0向量与任何向量的数量积为0、 探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负? 2、两个向量的数量积与实数乘向量的积有什么区别? (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、 (2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积ab,而ab是两个向量的数量的积,书写时要严格区分、符号“”在向量运算中不是乘号,既不能省略,也不能用“”代替、 (3)在实数中,若a?0,且ab=0,则b=0;但是在数量积中,
3、若a?0,且ab=0,不能推出b=0、因为其中cosq有可能为0、 高一数学教案2 教学目标: 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4、掌握向量垂直的条件、 教学重难点: 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学工具: 投影仪 教学过程: 一、复习引入: 1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数,使= 五,课堂小结 (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些
4、? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么? 六、课后作业 P107习题2、4A组2、7题 课后小结 (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么? 课后习题 高一数学教案3 教学目标 1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题. (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列
5、,了解等比中项的概念; (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项; (3)通过通项公式认识等比数列的性质,能解决某些实际问题. 2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质. 3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度. 教学建议 教材分析 (1)知识结构 等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用. (2)重点、难点分析 教学重点是等比数列的定义和对通项公式的认识与
6、应用,教学难点在于等比数列通项公式的推导和运用. 与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点. 虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点. 对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点. 教学建议 (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用. (2)等比数列概念的引入,可给出几个具体的例子,由学生概
7、括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义. (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解. (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象. (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现. (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 教学设计示例
8、 课题:等比数列的概念 教学目标 1.通过教学使学生理解等比数列的概念,推导并掌握通项公式. 2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力. 3.培养学生勤于思考,实事求是的精神,及严谨的科学态度. 教学重点,难点 重点、难点是等比数列的定义的归纳及通项公式的推导. 教学用具 投影仪,多媒体软件,电脑. 教学方法 讨论、谈话法. 教学过程 一、提出问题 给出以下几组数列,将它们分类,说出分类标准.(幻灯片) 2,1,4,7,10,13,16,19, 8,16,32,64,128,256, 1,1,1,1,1,1,1, 243,81,27,9,3,1, , , 31,29,27
9、,25,23,21,19, 1,1,1,1,1,1,1,1, 1,10,100,1000,10000,100000, 0,0,0,0,0,0,0, 由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中为有共同性质的一类数列(学生看不出的情况也无妨,得出定义后再考察是否为等比数列). 二、讲解新课 请学生说出数列的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫
10、,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列等比数列. (这里播放变形虫分裂的多媒体软件的第一步) 等比数列(板书) 1.等比数列的定义(板书) 根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语. 请学生指出等比数列各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式
11、,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识: 2.对定义的认识(板书) (1)等比数列的首项不为0; (2)等比数列的每一项都不为0,即 ; 问题:一个数列各项均不为0是这个数列为等比数列的什么条件? (3)公比不为0. 用数学式子表示等比数列的定义. 是等比数列 .在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能? 式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列
12、?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式. 3.等比数列的通项公式(板书) 问题:用 和 表示第 项 . 不完全归纳法 叠乘法 , , ,这 个式子相乘得 ,所以 . (板书)(1)等比数列的通项公式 得出通项公式后,让学生思考如何认识通项公式. (板书)(2)对公式的认识 由学生来说,最后归结: 函数观点; 方程思想(因在等差数列中已有认识,此处再复习巩固而已). 这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练) 如果增
13、加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题. 三、小结 1.本节课研究了等比数列的概念,得到了通项公式; 2.注意在研究内容与方法上要与等差数列相类比; 3.用方程的思想认识通项公式,并加以应用. 高一数学教案4 第一节 集合的含义与表示 学时:1学时 学习引导 一、自主学习 1.阅读课本 . 2.回答问题: 本节内容有哪些概念和知识点? 尝试说出相关概念的含义? 3完成 练习 4小结 二、方法指导 1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。 2、理解集合元素的特性,并会判断元素与集合的关系 3、掌握集合的表示方法,并会正确运用
14、它们表示一些简单集合。 4、在学习中要特别注意理解空集的意义和记法 思考引导 一、提问题 1.集合中的元素有什么特点? 2、集合的常用表示法有哪些? 3、集合如何分类? 4.元素与集合具有什么关系?如何用数学语言表述? 5集合 和 是否相同? 二、变题目 1.下列各组对象不能构成集合的是( ) A.北京大学2008级新生 B.26个英文字母 C.著名的艺术家 D.2008年北京奥运会中所设定的比赛项目 2.下列语句:0与 表示同一个集合; 由1,2,3组成的集合可表示为 或 ; 方程 的解集可表示为 ; 集合 可以用列举法表示。 其中正确的是( ) A.和 B.和 C. D.以上语句都不对 总
15、结引导 1.集合中元素的三特性: 2.集合、元素、及其相互关系的数学符号语言的表示和理解: 3.空集的含义: 拓展引导 1.课外作业: 习题11第 题; 2.若集合 ,求实数 的值; 3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 . 撰稿:程晓杰 审稿:宋庆 高一数学教案5 学 习 目 标 1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示; 2 能够在空间直角坐标系中求出点坐标 教 学 过 程 一 自 主 学 习 1平面直角坐标系建立方法,点坐标确定过程、表示方法? 2一个点在平面怎么表示?在空间呢? 3关于一些对称点坐标求法 关于坐标平面 对称点 ; 关
16、于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于 轴对称点 ; 关于 对轴称点 ; 关于 轴对称点 ; 二 师 生 互动 例1在长方体 中, , 写出 四点坐标 讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢? 变式:已知 ,描出它在空间位置 例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标 练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标 练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标 三 巩 固 练 习 1 关于空间直角坐标系叙述正确是( ) A 中 位置是可
17、以互换 B空间直角坐标系中点与一个三元有序数组是一种一一对应关系 C空间直角坐标系中三条坐标轴把空间分为八个部分 D某点在不同空间直角坐标系中坐标位置可以相同 2 已知点 ,则点 关于原点对称点坐标为( ) A B C D 3 已知 三个顶点坐标分别为 ,则 重心坐标为( ) A B C D 4 已知 为平行四边形,且 , 则顶点 坐标 5 方程 几何意义是 四 课 后 反 思 五 课 后 巩 固 练 习 1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标 2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系 求 坐
18、标; 求 坐标; 高一数学教案6 一、指导思想: 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4。发展
19、数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是人教版普通高中课程标准实验教科书数学(a版),它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点: 1。亲和力:以生动活泼的呈现方式,激发兴趣
20、和美感,引发学习激情。 2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。 4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、教法分析: 1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。 2。通过观察,思考,探
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内