2018二次函数压轴题题型归纳.doc
《2018二次函数压轴题题型归纳.doc》由会员分享,可在线阅读,更多相关《2018二次函数压轴题题型归纳.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .一、二次函数常考点汇总1、两点间的距离公式:2、中点坐标:线段的中点的坐标为:直线与的位置关系:1两直线平行且 2两直线相交3两直线重合且 4两直线垂直3、一元二次方程有整数根问题,解题步骤如下: 用和参数的其他要求确定参数的取值X围; 解方程,求出方程的根;两种形式:分式、二次根式 分析求解:假设是分式,分母是分子的因数;假设是二次根式,被开方式是完全平方式。例:关于的一元二次方程有两个整数根,且为整数,求的值。4、二次函数与轴的交点为整数点问题。方法同上 例:假设抛物线与轴交于两个不同的整数点,且为正整数,试确定此抛物线的解析式。5、方程总有固定根问题,可以通过解方程的方法求出该固定
2、根。举例如下: 关于的方程为实数,求证:无论为何值,方程总有一个固定的根。解:当时,; 当时,、;综上所述:无论为何值,方程总有一个固定的根是1。6、函数过固定点问题,举例如下:抛物线是常数,求证:不管为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。解:把原解析式变形为关于的方程;,解得:;抛物线总经过一个固定的点1,1。题目要求等价于:关于的方程不管为何值,方程恒成立小结:关于的方程有无数解7、路径最值问题待定的点所在的直线就是对称轴1如图,直线、,点在上,分别在、上确定两点、,使得之和最小。2如图,直线、相交,两个固定点、,分别在、上确定两点、,使得之和最小。3如图,是直线同旁的两
3、个定点,线段,在直线上确定两点、在的左侧 ,使得四边形的周长最小。8、在平面直角坐标系中求面积的方法:直接用公式、割补法三角形的面积求解常用方法:如右图,SPAB=1/2 PMx=1/2 ANy9、函数的交点问题:二次函数与一次函数 1解方程组可求出两个图象交点的坐标。 2解方程组,即,通过可判断两个图象的交点的个数 有两个交点 仅有一个交点 没有交点 10、方程法 1设:设主动点的坐标或根本线段的长度 2表示:用含同一未知数的式子表示其他相关的数量 3列方程或关系式11、几何分析法特别是构造“平行四边形、“梯形、“相似三角形、“直角三角形、“等腰三角形等图形时,利用几何分析法能给解题带来方便
4、。几何要求几何分析涉及公式应用图形跟平行有关的图形平移、平行四边形矩形梯形跟直角有关的图形勾股定理逆定理利用相似、全等、平行、对顶角、互余、互补等直角三角形直角梯形矩形跟线段有关的图形利用几何中的全等、中垂线的性质等。等腰三角形全等等腰梯形跟角有关的图形利用相似、全等、平行、对顶角、互余、互补等【例题精讲】OxyABCD一 根底构图:y=以下几种分类的函数解析式就是这个和最小,差最大 1在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标2在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标OxyABCD求面积最大 连接AC,在第四象限找一点P,使得面积最大,求出P坐标OxyABCD
5、讨论直角三角 连接AC,在对称轴上找一点P,使得为直角三角形,求出P坐标或者在抛物线上求点P,使ACP是以AC为直角边的直角三角形 讨论等腰三角 连接AC,在对称轴上找一点P,使得为等腰三角形,求出P坐标OxyABCD 讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标二 综合题型 例1 (中考变式如图,抛物线与x轴交与A(1,0),B(-3,0)两点,顶点为D。交Y轴于C(1)求该抛物线的解析式与ABC的面积。(2)在抛物线第二象限图象上是否存在一点M,使MBC是以BCM为直角的直角三角形,假设存在,求出点P的坐标。假设
6、没有,请说明理由(3)假设E为抛物线B、C两点间图象上的一个动点(不与A、B重合),过E作EF与X轴垂直,交BC于F,设E点横坐标为x.EF的长度为L,求L关于X的函数关系式?关写出X的取值X围?当E点运动到什么位置时,线段EF的值最大,并求此时E点的坐标?(4)在5的情况下直线BC与抛物线的对称轴交于点H。当E点运动到什么位置时,以点E、F、H、D为顶点的四边形为平行四边形?(5)在5的情况下点E运动到什么位置时,使三角形BCE的面积最大?例2 考点: 关于面积最值 如图,在平面直角坐标系中,点A、C的坐标分别为(1,0)、(0,),点B在x轴上某二次函数的图象经过A、B、C三点,且它的对称
7、轴为直线x1,点P为直线BC下方的二次函数图象上的一个动点点P与B、C不重合,过点P作y轴的平行线交BC于点FyxBAFPx1CO1求该二次函数的解析式;2假设设点P的横坐标为m,试用含m的代数式表示线段PF的长;3求PBC面积的最大值,并求此时点P的坐标例3 考点:讨论等腰如图,抛物线yx2bxc与y轴相交于C,与x轴相交于A、B,点A的坐标为2,0,点C的坐标为0,11求抛物线的解析式;2点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;BCOA备用图yx3在直线BC上是否存在一点P,使ACP为等腰三角形,假设存在,求点P的坐标,假设不存在,说明
8、理由DBCOAyxE例4考点:讨论直角三角 如图,点A一1,0和点B1,2,在坐标轴上确定点P,使得ABP为直角三角形,那么满足这样条件的点P共有 (A2个 B4个 C 6个D7个:如图一次函数yx1的图象与x轴交于点A,与y轴交于点B;二次函数yx2bxc的图象与一次函数yx1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为1,01求二次函数的解析式;2求四边形BDEC的面积S;OAByCxDE23在x轴上是否存在点P,使得PBC是以P为直角顶点的直角三角形?假设存在,求出所有的点P,假设不存在,请说明理由例5 考点:讨论四边形:如下图,关于x的抛物线yax2xca0与x轴交于点A2,
9、0,点B6,0,与y轴交于点C1求出此抛物线的解析式,并写出顶点坐标;2在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;3在2中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由BAyOCx综合练习:1、平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1, 0),OBOC,抛物线的顶点为D。 (1) 求此抛物线的解析式; (2) 假设此抛物线的对称轴上的点P满足APBACB,求点P的坐标; (3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 二次 函数 压轴 题型 归纳
限制150内