2019-2020学年八年级数学上册-2.7.1-二次根式教案-北师大版.doc
《2019-2020学年八年级数学上册-2.7.1-二次根式教案-北师大版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年八年级数学上册-2.7.1-二次根式教案-北师大版.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年八年级数学上册 2.7.1 二次根式教案 北师大版教学目标: 1.认识二次根式和最简二次根式的概念. 2.探索积的算术平方根与商的算术平方根的性质 3.利用积的算术平方根和商的算术平方根的性质将二次根式化为最简二次根式 4.通过利用二次根式的性质进行计算,理解最简二次根式的含义.在探究中培养学生的思维能力和归纳概括的意识教学重点与难点: 重点:二次根式的概念、性质及二次根式的化简. 难点:理解(a0,b0),(a0, b0)并用它们进行二次根式化简.教学过程:一、创设情境,导入新课活动内容:求下列各数,思考下面的两个问题:1.我校有两个正方形的花坛,一个面积为8平方米,一
2、个面积为2平方米,大家说这两个正方形的边长是多少?2. 5的算术平方根是多少? 3.一个正数的平方是7.2,这个数多少? 4.直角三角形的斜边长是c,一条直角边是b,那么另一条直角边的长为多少?问题1:它们的值有什么共同特点?问题2:它们的值是最简形式吗?处理方式:学生独立完成,写出两个正方形的边长和,然后同伴交流所提出的两个问题。 引入我们今天要学习的内容.设计意图:由生活中的数学引出新课要探究的数学问题,一是,使学生感知数学在生活中的应用,激发学生的求知欲,为下一环节奠定了良好的基础二是加强前后知识间的联系,使学生认识到学习的必要性,从而增强学习的积极性.同时也顺利的引入了新课.二、探究学
3、习,感悟新知活动内容1:(多媒体出示)观察下列各数并思考下面的问题:问题:,(其中b=24,c=25),上述式子有什么共同特征?处理方式:以小组为单位,让学生充分讨论后回答,只要学生回答的合情合理均给予肯定和鼓励,通过式子的特点介绍二次根式的概念. 一般地,式子叫做二次根式.a叫做被开方数强调条件:设计意图:学生通过观察并与小组成员的讨论这些式子的共同点,使学生能够形成二次根式的概念,初步感知二次根式的形态.同时教会学生在探究中培养学生的思维能力和归纳概括的意识,使学生学会学习练一练:1.下列式子,哪些是二次根式,哪些不是二次根式?,,, 2.当x是多少时,二次根式 在实数范围内有意义?3.若
4、 有意义,则m能取得最小整数值是( ).参考答案:1. ,,是二次根式, 2. 3. 1处理方式:学生独立完成后进行交流讨论,使学生对二次根式有一个较深刻、全面的认识.使学生认识到:看一个式子是否为二次根式,关键看是否满足的形式. 即:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数.设计意图:通过练习,让学生加强对二次根式定义的认识. 第1题着眼于弄清二次根式的形式,巩固二次根式有意义的条件.第2题和第3题都是用不同的形式来考察学生对二次根式有意义的理解.让学生在练习中发现乐趣,掌握知识.活动内容2:(多媒体出示)计算下列各题,你发现了什么规律?(1). 计算下列各式,你能得
5、到哪些猜想?; , ,;处理方式:让学生完成题目后交流,发现算式的特点及规律.设计意图:引导学生发现算式的特点及规律,并产生猜想, 增强学生的求知欲(2). 猜猜,也有类似的关系吗?你还能举出类似的例子吗?并用计算器验证.设计意图:引导学生验证猜想,得出规律,使学生获得成功的喜悦.并且收获了研究数学问题的探究方法问题1:你能用字母表示这个规律吗?问题2:能用语言描述这个结论的意义吗?处理方式:小组内交流展示,重点引导学生认识算式的特点及二次根式有意义的条件.小组总结出结论. ( a0,b0),这里应强调a,b的取值范围.预设:如果不能得出a,b的取值范围,教师应及时引导学生根据二次根式有意义的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 八年 级数 上册 2.7 二次 根式 教案 北师大 doc
限制150内