2019年八年级数学下册《18.1-勾股定理(二)》教案-新人教版.doc
《2019年八年级数学下册《18.1-勾股定理(二)》教案-新人教版.doc》由会员分享,可在线阅读,更多相关《2019年八年级数学下册《18.1-勾股定理(二)》教案-新人教版.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年八年级数学下册18.1 勾股定理(二)教案 新人教版教学目标一、知识与技能1了解证明勾股定理逆定理的方法2理解逆定理,互递定理的概念二、过程与方法1经历证明勾股定理逆定理的过程,发展学生的逻辑思维能力和空间想象能力2经历互为逆定理的讨论,培养学生严谨的治学态度和实事求是求学精神三、情感态度与价值观1经历探索勾股定理逆定理证明的过程,培养学生克服困难的勇气和坚强的意志2培养学生与人合作、交流的团队意识教学重点 勾股定理逆定理的证明,及互逆定理的概念教学难点 互逆定理的概念教具准备 多媒体课件教学过程一、创设问题情境,引入新课 活动1 以下列各组线段为边长,能构成三角形的是_(填序号),
2、能构成直角三角形的是_3,4,5 1,3,4 4,4,6 6,8,10 5,7,2 13,5,12 7,25,24设计意图:帮助学生回忆构成三角形的条件和判定一个三角形为直角三角形的条件师生行为:由学生自己独立完成,教师巡视学生填的结果 在此活动中,教师应重点关注:学生是否熟练地完成填空;学生是否积极主动地完成任务 生:能构成三角形的是:,能构成直角三角形的是;二、讲授新课 活动2 问题:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?设计意图:由特例猜想得到的结论,会让一些同学产生疑虑,我们的猜想是否正确,必须有严密的推理证明过程,才能让大家用的放心通过对命题
3、2的证明,还可以提高学生的逻辑推理能力师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路 本活动中,教师应重点关注学生:能否在教师的引导下,理清思路能否积极主动地思考问题,参与交流、讨论 师:ABC的三边长a,b,c满足a2b2c2如果ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形ABC,使BCa,ACb,C90(如下图)把画好的ABC剪下,放在ABC上,它们重合吗? 生:我们所画的RtABC,ABa2b2,又因为c2a2b2,所以AB2c2,即ABc ABC和ABC三边对应相等,所以两个三角形全等,CC90ABC为直角三角形即命题
4、2是正确的 师:很好,当我们证明了命题2是正确的,那么命题就成为一个定理由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互为逆定理 师:但是不是原命题成立,逆命题一定成立吗? 生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立 师:你还能举出类似的例子吗? 生:例如:如果两个实数相等,那么它们的绝对值也相等 逆命题:如果两个数的绝对值相等,那么这两个实数相等 显示原命题成立,而逆命题不成立活动3 练习:1如果三条线段长a,b,c满足a2c2b2这三条线段组成的三角形是不是
5、直角三角形?为什么? 2说出下列命题的逆命题这些命题的逆命题成立吗? (1)两条直线平行,内错角相等 (2)如果两个实数相等,那么它们的绝对值相等 (3)全等三角形的对应角相等 (4)在角的平分线上的点到角的两边的距离相等设计意图 进一步理解和掌握勾股定理的逆定理的本质特征,以及互为逆命题的关系及正确性;提高学生的数学应用意识和逻辑推理能力师生行为:学生独立思考,自主完成;教师巡视完成练习的情况,以不同层次的学生给予辅导在此活动中,教师应重点关注学生学生对勾股定理的逆定理的理解学生对互为逆命题的掌握情况学生面对困难,是否有克服困难的勇气 师:我们先来完成练习第1题 生:a2c2b2,移项得a2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 18.1-勾股定理二 2019 八年 级数 下册 18.1 勾股定理 教案 新人 doc
限制150内