2019-2020学年八年级数学下册-18.2-勾股定理的逆定理(二)教学案-新人教版.doc
《2019-2020学年八年级数学下册-18.2-勾股定理的逆定理(二)教学案-新人教版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年八年级数学下册-18.2-勾股定理的逆定理(二)教学案-新人教版.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年八年级数学下册 18.2 勾股定理的逆定理(二)教学案 新人教版课题时间学习目的知识与技能勾股定理的逆定理的实际应用.过程与方法通过用三角形三边的数量关系来判断三角形的形状,体验数形结合.情感态度与价值观在探究活动过程中,经历知识的发生、发展与形成的过程. 培养敢于实践、勇于发现、大胆探索、合作创新的精神,增强学好数学、用好数学的信心和勇气.教学重点勾股定理的逆定理及其实际应用.教学难点勾股定理逆定理的灵活应用.教学手段讲练结合教 学 内 容 和 过 程一、复习提问 1、勾股定理的逆定理? 2、已知三角形三边长,如何判断三角形是否是直角三角形? 3、勾股数? 4、互逆命题
2、?二、新课例1、某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里. 如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:“远航”号航行方向已知,只要求出“海天”号与它的航向的夹角就可以知道“海天”号的航行方向.解:根据题意画出示意图:PQ=161.5=24PR=121.5=18QR=30在RPQ中, QPR=90(勾股定理的逆定理) 1=452=45即“海天”号沿西北方向航行注意:若此题没有“某港口位于东西方向的海岸线上”这个条件,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 八年 级数 下册 18.2 勾股定理 逆定理 教学 新人 doc
限制150内