2019-2020学年九年级数学上册-3.2-圆的轴对称性教案(2)-浙教版.doc
《2019-2020学年九年级数学上册-3.2-圆的轴对称性教案(2)-浙教版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年九年级数学上册-3.2-圆的轴对称性教案(2)-浙教版.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年九年级数学上册 3.2 圆的轴对称性教案(2) 浙教版教学目标 1.使学生掌握垂径定理及其推论,并会用垂径定理及其推论解决有关证明、计算和作图问题; 2.使学生了解垂径定理及其推论在实际中的应用,培养学生把实际问题转化为数学问题的能力和计算能力,结合应用问题向学生进行爱国主义教育.教学重点和难点垂径定理的两个推论是重点;由定理推出推论1是难点.教学过程设计 一、从学生原有的认知结构提出问题 1.画图叙述垂径定理,并说出定理的题设和结论.(由学生叙述) 2.结合图形7-35,教师引导学生写出垂径定理的下述形式:题设 结论 线CD平分弦AB 指出:垂径定理是由两个条件推出三个
2、结论,即由推出.提问:如果把题设和结论中的5条适当互换,情况又会怎样呢?引出垂径定理推论的课题 二、运用逆向思维方法探讨垂径定理的推论 1.引导学生观察图形,选为题设,可得: 由于一个圆的任意两条直径总是互相平分的,但是它们不一定是互相垂直的,所以要使上面的题设能够推出上面的结论,还必须加上“弦AB不是直径”这一条件. 这个命题是否为真命题,需要证明,结合图形请同学叙述已知、求证,教师在黑板上写出. 已知:如图7-36,在O中,直径CD与弦AB(不是直径)相交于E,且E是AB的中点. 求证:CDAB,. 分析:要证明CDAB,即证OEAB,而E是AB的中点,即证OE为AB的中垂线.由等腰三角形
3、的性质可证之.利用垂径定理可知ACBC,ADBD. 证明:连结OA,OB,则OAOB,AOB为等腰三角形. 因为E是AB中点,所以OEAB,即CDAB, 又因为CD是直径,所以 2.若选为题设,可得: 以上命题用投影打出,引导学生自己证出 3.根据上面具体的分析,在感性认识的基础上,引导学生用文字叙述其中最常用的二个命题,教师板书出垂径定理的推论1. 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2) 平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧. 三、应用举例,变式练习 例1 平分已知. 引导学生画图,写已知、求作. 已知: (图7-38),求作
4、:的中点. 分析:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.因此,连结AB,作弦AB的垂直平分线,它一定平分. 作法:(由学生口述,教师板书,师生共同作图) 练习1 四等分已知. 引导学生在平分的基础上,进一步平分AM和BM,即可四等分AB. 作图后,提问:四等分弦AB是否可四等分,为什么?如图7-39所示.在学生回答的基础上,强调:这种作法是错误的,虽然在等分时作法是对的,但是在等分和时是错误的,因为AT,BT不是和所对的弦.因此AT,BT的垂直平分线不能平分和,请同学们务必注意. 练习2 按图7-40,填空:在O中此练习的目的是为了帮助学生掌握垂径定理及推论1的条件和结论.例2 13
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 九年级 数学 上册 3.2 轴对称 教案 浙教版 doc
限制150内