新人教版八级数学知识点总结归纳全册2.docx
《新人教版八级数学知识点总结归纳全册2.docx》由会员分享,可在线阅读,更多相关《新人教版八级数学知识点总结归纳全册2.docx(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结1、三角形的概念第十一章三角形可编辑资料 - - - 欢迎下载精品名师归纳总结由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边。相邻两边的公共端点叫做三角形的顶点。相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段( 1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。( 2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。( 3)从三
2、角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高) 。3、三角形的稳固性三角形的外形是固定的,三角形的这个性质叫做三角形的稳固性。三角形的这个性质在生产生活中应用很广,需要稳固的东西一般都制成三角形的外形。4、三角形的特性与表示三角形有下面三个特性:( 1)三角形有三条线段( 2)三条线段不在同始终线上三角形是封闭图形( 3)首尾顺次相接三角形用符号“”表示,顶点是A、B、C 的三角形记作“ABC”,读作“三角形 ABC”。5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角
3、形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 24 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特别的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论( 1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的
4、两边之差小于第三边。( 2)三角形三边关系定理及推论的作用:判定三条已知线段能否组成三角形当已知两边时,可确定第三边的范畴。证明线段不等关系。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边。等边对等角。大角对大边。大边对大角。18、三角形的面积 = 2 底高多边形学问要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。可编辑资料 - - - 欢迎下载精品名师归纳总结分类 1:凸多边形凹
5、多边形可编辑资料 - - - 欢迎下载精品名师归纳总结正多边形:各边相等,各角也相等的多边形叫做正多边形。多边形非正多边形:可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 2 页,共 24 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -1、n 边形的内角和等于180( n-2 )。多边形的定理2、任意凸形多边形的外角和等于360。3、n 边形的对角线条数等于1/2 n( n-3 )第十二章全等三角形一、全等三角形能够
6、完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质( 1):全等三角形的对应边相等、对应角相等。( 2):全等三角形的周长相等、面积相等。( 3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS” 边角边 : 两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”角边角 : 两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA” 角角边 : 两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”斜边. 直角边: 斜边和一条直角边对
7、应相等的两个直角三角形全等(可简写成 “HL”4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应留意以下几个问题:( 1: 要正确区分“对应边”与“对边” ,“对应角”与“对角”的不同含义。( 2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上。( 3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不肯定全等。可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 3 页,共
8、 24 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -( 4):时刻留意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”1、全等三角形的概念能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。2、全等三角形的表示和性质全等用符号“”表示,读作“全等于”。如 ABC DEF,读作“三角
9、形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、三角形全等的判定 三角形全等的判定定理:( 1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成 “边角边”或“ SAS”)( 2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成 “角边角”或“ ASA”)( 3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或 “ SSS”)。直角三角形全等的判定:对于特别的直角三角形,判定它们全等时,仍有HL定理(斜边、直角边定理) :有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或
10、“ HL”)4、全等变换只转变图形的位置,二不转变其外形大小的图形变换叫做全等变换。全等变换包括一下三种:( 1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。( 2)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。( 3)旋转变换:将图形绕某点旋转肯定的角度到另一个位置,这种变换叫做旋转变换。可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 24 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - -
11、- -第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,假如直线两旁的部分能够完全重合,那么这个图学问回忆:形就3、叫轴对做称轴图形对和称轴图对称形的。区分这与条联直系 线就是它的对称轴。这时我们也说这个图形关于这条可编辑资料 - - - 欢迎下载精品名师归纳总结直线(成轴轴)对对称图称形 。轴对称AA可编辑资料 - - - 欢迎下载精品名师归纳总结A图形2. 把一个图形沿着某一条直线折叠,假如它能与另一个图形完全重合,那么就说BCCBBC可编辑资料 - - - 欢迎下载精品名师归纳总结这两个图1 轴关对称于图形这是指条 始终个线1 对轴对称称是指。 两这个 图条形直线叫做对称轴。
12、折叠后重合的点是对应点, 叫做可编辑资料 - - - 欢迎下载精品名师归纳总结区分具 有特别外形的图形 ,只对 一个图形而言 ;的位置关系 , 必需涉及 两个 图形;可编辑资料 - - - 欢迎下载精品名师归纳总结对称点2 对称轴 不一 定只有一条假如把轴对称图形沿对称轴(2) 只有 一条 对称轴.假如把两个成轴对称的图形可编辑资料 - - - 欢迎下载精品名师归纳总结就关于这条直线成轴对称 .么它就是一个轴对称图形 .就关于这条直线成轴对称 .么它就是一个轴对称图形 .3、联轴系 对称图形和轴对称的区分与联系分成两部分 , 那么这两个图形拼在一起看成一个整体 , 那4. 轴对称的性质关于某直
13、线对称的两个图形是全等形。假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。假如两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2. 线段垂直平分线上的点与这条线段的两个端点的距离相等3. 与一条线段两个端点距离相等的点,在线段的垂直平分线上三 、 用 坐 标 表 示 轴 对 称 小 结 : 在平面直角坐标系中,关于 x 轴对称的点横坐标相等 , 纵坐标互为相反数 . 关于 y 轴对称
14、的点横坐标互为相反数 , 纵坐标相等 .点( x, y)关于 x 轴对称的点的坐标为 . 点( x, y)关于 y 轴对称的点的坐标为 .2. 三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 5 页,共 24 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -四、(等腰三角形 学问点回忆1. 等腰三角形的性质 . 等腰三角形的两个底角相等。 (等边对等角
15、) . 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一)2、等腰三角形的判定:假如一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)学问点回忆1. 等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是 600 的等腰三角形是等边三角形。3. 在直角三角形中,假如一个锐角等于300,那么它所对的直角边等于斜边的一半。1、等腰三角形的性质( 1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论 1:等腰三角形顶角平分线平分底边
16、并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论 2:等边三角形的各个角都相等,并且每个角都等于60。( 2)等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于45等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。可编辑资料 - - - 欢迎下载精品名师归纳总结等腰三角形的三边关系:设腰长为a,底边长为 b,就b a2可编辑资料 - - - 欢迎下载精品名师归纳总结等腰三角形的三角关系:设顶角为顶角为A,底角为 B、 C,就 A=180 2 B, B= C=180A22、等腰三角形的判定等腰三角形的判定定理及推论:定理:假如一个三角形
17、有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 6 页,共 24 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -推论 1:三个角都相等的三角形是等边三角形推论 2:有一个角是 60的等腰三角形是等边三角形。推论 3:在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜 边的一半。等腰三角形的性质与判定
18、等腰三角形性质等腰三角形判定可编辑资料 - - - 欢迎下载精品名师归纳总结中1、等腰三角形底边上的中线垂直线底边,平分顶角。2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。角1、等腰三角形顶角平分线垂直平平分底边。分2、等腰三角形两底角平分线相线等,并且它们的交点究竟边两端点的距离相等。高1、等腰三角形底边上的高平分顶线角、平分底边。2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。1、两边上中线相等的三角形是等腰三角形。2、假如一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形1、假如三角形的顶角平分线垂直于这个角的对边(平分
19、对边),那么这个三角形是等腰三角形。2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。1、假如一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形。2、有两条高相等的三角形是等腰三角形。可编辑资料 - - - 欢迎下载精品名师归纳总结角等边对等角等角对等边边底的一半 腰长周长的一半两边相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 7 页,共 24 页 - - - - - - - - - -可编辑资料 - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人教版八级数学知识点总结归纳全册 新人 教版八 级数 知识点 总结 归纳
限制150内