2019年八年级数学下册-6.6-关注三角形的外角教案-北师大版.doc
《2019年八年级数学下册-6.6-关注三角形的外角教案-北师大版.doc》由会员分享,可在线阅读,更多相关《2019年八年级数学下册-6.6-关注三角形的外角教案-北师大版.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年八年级数学下册 6.6 关注三角形的外角教案 北师大版教学目标:1.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力.2.理解掌握三角形内角和定理的推论及其应用.教学重点与难点:重点:三角形内角和定理的推论.难点:三角形的外角、三角形内角和定理的推论的应用.教法与学法指导:教法:以培养学生自主学习能力为主,重点放在“合作与探究”上,让学生多观察、多动脑、大胆猜、勤探究,向学生提供更多的实践机会和交流空间,使学生在动脑、动手、动口的过程中获得分析和解决问题的能力,获得广泛的数学活动经验,成为学习的主人学法:自主探究与小组合作交流相结合课前准备:多媒体课件教学过程:一、温故
2、知新,自然引入师上节课我们证明了三角形内角和定理,大家来回忆一下:它的证明思路是什么?生通过作辅助线,把三角形中处于不同位置的三个内角集中在一起,拼成一个平角.这样就可以证明三角形的内角和等于180.师很好,下面大家来共同证明:三角形的内角和定理.已知,如图656,ABC.求证:A+B+C=180证明:作BC的延长线CD,过点C作CEBA.则:A=ACE(两直线平行,内错角相等)B=ECD(两直线平行,同位角相等)ACB+ACE+ECD=180(1平角=180)ACB+A+B=180(等量代换)师好,在证明这个定理时,先把ABC的一边BC延长,这时在ABC外得到 ACD,我们把ACD叫做三角形
3、ABC的外角.那三角形的外角有什么性质呢?我们这节课就来研究三角形的外角及其应用.设计意图:复习三角形内角和定理的证明方法,为本节课学生打好理论基础,进而引入新课二、师生互动,探究新知师那什么叫三角形的外角呢?像ACD那样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.外角的特征有三条:(1)顶点在三角形的一个顶点上.如:ACD的顶点C是ABC的一个顶点.(2)一条边是三角形的一边.如:ACD的一条边AC正好是ABC的一条边.(3)另一条边是三角形某条边的延长线.如:ACD的边CD是ABC的BC边的延长线.把三角形各边向两方延长,就可以画出一个三角形所有的外角.由此可知:一个三角形有
4、6个外角,其中有三个与另外三个相等,所以研究时,只讨论三个外角的性质.下面大家来想一想、议一议(出示投影片6.6 A)如图657,1是ABC的一个外角,1与图中的其他角有什么关系呢?能证明你的结论吗?生甲1与4组成一个平角.所以1+4=180.生乙1=2+3.因为:1与4的和是180,而2、3、4是ABC的三个内角.则2+3+4=180.所以2+3=1804.而1=1804,因此可得: 1=2+3.生丙因为1=2+3,所以由和大于任何一个加数,可得:12,13.师很好.大家能用自己的语言说明你的结论的正确性.你能把你的结论归纳成语言吗?生丁三角形的一个外角等于两个内角的和.它也大于三角形的一个
5、内角.生戊不对,如图658.图658(1)中,ACD是ABC的外角,从图中可知:ACB是钝角三角形.ACBACD.所以ACD不可能等于ABC内的任两个内角的和.图658(2)中的ABC是直角三角形,ACD是它的一个外角,它与ACB相等.由上述可知:丁同学归纳的结论是错误的.应该说:三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任一个内角.师噢.原来是这样的,同学们同意他的意见吗?生同意.师是三角形的任一个外角都有此结论吗?生是的.师很好.由此我们得到了三角形的外角的性质(出示投影片6.6 B)三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何
6、一个和它不相邻的内角.师这两个结论是由什么推导出来的呢?生通过三角形的内角和定理推出来的.师对.在这里,我们通过三角形内角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定理的推论(corollary).因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用.注意:应用三角形内角和定理的推论时,一定要理解其意思.即:“和它不相邻”的意义.下面我们来研究三角形内角和定理的推论的应用(出示投影片6.6 C)例1已知,如图659,在ABC中,AD平分外角EAC,B=C,求证:ADBC.师生共析要证明ADBC.只需证明“同位角相等”即:需证明:DAE=B.证
7、明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=CB=EAC(等式的性质)AD平分EAC(已知)DAE=EAC(角平分线的定义)DAE=B(等量代换)ADBC(同位角相等,两直线平行)师同学们想一想,还有没有其他的证明方法呢?生甲这个题还可以用“内错角相等,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC(角平分线的定义)DAC=C(等量代换)ADBC(内错角相等,两直线平行)生乙还可以用“同旁内角互补,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 八年 级数 下册 6.6 关注 三角形 外角 教案 北师大 doc
限制150内