2019-2020学年九年级数学上册-22.2.2-配方法教案(1)-新人教版.doc
《2019-2020学年九年级数学上册-22.2.2-配方法教案(1)-新人教版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年九年级数学上册-22.2.2-配方法教案(1)-新人教版.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年九年级数学上册 22.2.2 配方法教案(1) 新人教版课题:设计人:授课人:设计时间:授课时间:教学设计授课备注22.2.2 配方法第1课时 教学内容 间接即通过变形运用开平方法降次解方程 教学目标 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题 通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤 重难点关键 1重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤 2难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧 教学过程
2、 一、复习引入 (学生活动)请同学们解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得x=或mx+n=(p0) 如:4x2+16x+16=(2x+4)2 二、探索新知 列出下面二个问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面三个方程的解法呢? 问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起” 大意
3、是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少? 老师点评:问题1:设总共有x只猴子,根据题意,得: x=(x)2+12 整理得:x2-64x+768=0 问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500 整理,得:x2-36x+70=0 (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后
4、二个不具有 (2)不能 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2-64x+768=0 移项 x=2-64x=-768两边加()2使左边配成x2+2bx+b2的形式 x2-64x+322=-768+1024 左边写成平方形式 (x-32)2=256 降次x-32=16 即 x-32=16或x-32=-16 解一次方程x1=48,x2=16 可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子 学生活动: 例1按以上的方程完成x2-36x+70=0的解题 老师点评:x2-36x=-70,x2-36x+182=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 九年级 数学 上册 22.2 配方 教案 新人 doc
限制150内