2019-2020学年高考数学一轮复习-8.3圆锥曲线-精品导学案.doc





《2019-2020学年高考数学一轮复习-8.3圆锥曲线-精品导学案.doc》由会员分享,可在线阅读,更多相关《2019-2020学年高考数学一轮复习-8.3圆锥曲线-精品导学案.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年高考数学一轮复习 8.3圆锥曲线 精品导学案【高考目标定位】一、曲线与方程1考纲点击了解方程的曲线与曲线的方程的对应关系。2热点提示(1)本节重点考查曲线与方程的关系,考查曲线方程的探求方法;(2)本部分在高考试题中主要以解答题的形式出现,属中高档题目。二、椭圆1考纲点击(1)掌握椭圆的定义、几何图形、标准方程及简单性质;(2)了解圆锥曲线的简单应用。2热点提示(1)椭圆的定义、标准方程和几何性质是高考重点考查的内容;直线和椭圆的位置关系是高考考查的热点。(2)各种题型都有涉及,作为选择题、填空题属中低档题,作为解答题则属于中高档题目。三、双曲线1考纲点击(1)了解双曲线
2、的定义、几何图形和标准方程,知道双曲线的简单几何性质。(2)了解圆锥曲线的简单应用。2热点提示(1)双曲线的定义、标准方程和离心率、渐近线等知识是高考考查的重点;直线与双曲线的位置关系有时也考查,但不作为重点。(2)主要以选择、填空题的形式考查,属于中低档题。四、抛物线1考纲点击(1)掌握抛物线的定义、几何图形、标准方程及简单性质。(2)了解圆锥曲线的简单应用。2热点提示(1)抛物线的定义、标准方程及性质是高考考查的重点,直线与抛物线的位置关系是考查的热点。(2)考题以选择、填空题为主,多为中低档题。【考纲知识梳理】一、曲线与方程1一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f
3、(x,y)=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解。(2)以这个方程的解为坐标的点都是曲线上的点。那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。注:如果中满足第(2)个条件,会出现什么情况?(若只满足“以这个方程的解为坐标的点都是曲线上的点”),则这个方程可能只是部分曲线的方程,而非整个曲线的方程,如分段函数的解析式。2求动点的轨迹方程的一般步骤(1)建系建立适当的坐标系.(2)设点设轨迹上的任一点P(x,y).(3)列式列出动点P所满足的关系式.(4)代换依条件的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简。(5)证明证明所求方程即为符合条件的
4、动点轨迹方程.注:求轨迹和轨迹方程有什么不同?(求轨迹和轨迹方程的不同:后者只指方程(包括范围),而前者包含方程及所求轨迹的形状、位置、大小等。二、椭圆1对椭圆定义的理解:平面内动点P到两个定点,的距离的和等于常数2a,当2a|时,动点P的轨迹是椭圆;当2a=|时,轨迹为线段;当2a|时,轨迹不存在。2椭圆的标准方程和几何性质标准方程图形性质范围对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点轴长轴的长为2a短轴的长为2b焦距|=2c离心率a,b,c的关系注:椭圆的离心率的大小与椭圆的扁平程度的关系(离心率越接近1,椭圆越扁,离心率越接近0,椭圆就越接近于圆)。3点与椭圆的位
5、置关系三、双曲线1双曲线的定义(1)平面内动点的轨迹是双曲线必须满足两个条件:与两个定点,的距离的差的绝对值等于常数2a.。(2)上述双曲线的焦点是,焦距是|。注:当2a=|时,动点的轨迹是两条射线;当2a|时,动点的轨迹不存在;当2a=0时,动点的轨迹是线段的中垂线。2双曲线的标准方程和几何性质标准方程图形性质范围xa或x-ay-a或ya对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点顶点坐标:顶点坐标:渐近线离心率实虚轴线段叫做双曲线的实轴,它的长=2a;线段叫做双曲线的虚轴,它的长=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。a,b,c的关系注:离心率越大,双
6、曲线的“开口”越大。3等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其标准方程为,离心率,渐近线方程为四、抛物线1抛物线的定义平面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线。注:当定点F在定直线时,动点的轨迹是过点F与直线垂直的直线。2抛物线的标准方程和几何性质标准方程图形性质对称轴x轴x轴y轴y轴焦点坐标准线方程焦半径范围顶点离心率【热点难点精析】一、曲线与方程(一)用直接法求轨迹方程相关链接1如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含、的等式,得到轨迹方程,这种方法称之为直接法。用直接法
7、求动点轨迹的方程一般有建系设点、列式、代换、化简、证明五个步骤,但最后的证明可以省略。2用直接法求轨迹方程是近年来高考常考的题型,有时题目以向量为背景,解题中需注意向量的坐标化运算。有时需分类讨论。例题解析例如图所示,设动直线垂直于x轴,且与椭圆交于A、B两点,P是上满足的点,求点P的轨迹方程。思路解析:设P点坐标为(x,y)求出A、B两点坐标代入求P点轨迹标明x的范围。解答:设P点的坐标为(x,y),则由方程,得,A、B两点的坐标分别为,又,即又直线与椭圆交于两点,-2x2,点P的轨迹方程为(-2x|,动圆圆心M(x,y)到点(-3,0)和(3,0)的距离和是常数12,所以点M的轨迹是焦点为
8、点(-3,0)、(3,0),长轴长等于12的椭圆。2c=6,2a=12,c=3,a=6圆心轨迹方程为,轨迹为椭圆。方法二:由方法一可得方程移项再两边分别平方得:两边再平方得:,整理得所以圆心轨迹方程为,轨迹为椭圆。注:(1)平面向量知识融入解析几何是高考命题的一大特点,实际上平面向量的知识在这里只是表面上的现象,解析几何的实质是坐标法,就是用方程的思想研究曲线,用曲线的性质研究方程,轨迹问题正是体现这一思想的重要表现形式,我们只要能把向量所表示的关系转化为坐标的关系,这类问题就不难解决了。而与解析几何有关的范围问题也是高考常考的重点。求解参数问题主要是根据条件建立含参数的函数关系式,然后确定参
9、数的值。(2)回归定义是解圆锥曲线问题十分有效的方法,值得重视。(3)对于“是否存在型”探索性问题的求解,先假设结论存在,若推证无矛盾,则结论存在;若推证出矛盾,则结论不存在。(三)用相关点法(代入法)求轨迹方程相关链接1动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点的运动而有规律的运动,且动点Q的轨迹方程为给定或容易求得,则可先将表示x、y的式子,再代入Q的轨迹方程,然后整理得P的轨迹方程,代入法也称相关点法。2用代入法求轨迹方程的关键是寻求关系式:,然后代入已知曲线。而求对称曲线(轴对称、中心对称)方程实质上也是用代入法(相关点法)解题。例题解析例已知A(-1,0
10、),B(1,4),在平面上动点Q满足,点P是点Q关于直线y=2(x-4)的对称点,求动点P的轨迹方程。思路解析:由已知易得动点Q的轨迹方程,然后找出P点与Q点的坐标关系,代入即可。解答: 设Q(x,y),则故由,即所以点Q的轨迹是以C(0,2)为圆心,以3为半径的圆。点P是点Q关于直线y=2(x-4)的对称点。动点P的轨迹是一个以为圆心,半径为3的圆,其中是点C(0,2)关于直线y=2(x-4) 的对称点,即直线y=2(x-4)过的中点,且与垂直,于是有,解得:故动点P的轨迹方程为。(四)用参数法求轨迹方程例设椭圆方程为,过点的直线交椭圆于点A、B,O是坐标原点,点P满足点N的坐标为,当绕点M
11、旋转时,求:(1)动点P的轨迹方程;(2)的最小值与最大值。解析:(1)直线过点,当斜率存在时,设其斜率为,则的方程为记由题设可得点A、B的坐标是方程组的解,消去得于是,设点P的坐标为,则 消去参数得 当不存在时,A、B中点为坐标原点(0,0),也满足方程,所以点P的轨迹方程为。(2)由点P的轨迹方程知即又故当时,取得最小值为;当时,取得最大值为。二、椭圆(一)椭圆的定义以及标准方程相关链接求椭圆的标准方程主要有定义、待定系数法,有时还可根据条件用代入法。用待定系数法求椭圆方程的一般步骤是:(1)作判断:根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能。(2)设方程:根据上
12、述判断设方程。(3)找关系:根据已知条件,建立关于的方程组。(4)得方程:解方程组,将解代入所设方程,即为所求。注:当椭圆的焦点位置不明确而无法确定其标准方程时,可设,可以避免讨论和繁杂的计算,也可以设为,这种形式在解题时更简便。例已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程。思路解析:设椭圆方程为根据题意求得方程。解答:设所求的椭圆方程为,由已知条件得故所求方程为(二)椭圆的几何性质相关链接1椭圆的几何性质涉及一些不等关系,例如对椭圆,有等,在求与椭圆有关的一些量的范围,或者求这些量的最大值时,经常用到这些不等关系。
13、2求解与椭圆几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形。当涉及到顶点、焦点、准线、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系。3求椭圆离心率问题,应先将e用有关的一些量表示出来,再利用其中的一些关系构造出关于e的等式或不等式,从而求出e的值或范围。离心率e与的关系:例题解析例已知椭圆的长轴、短轴端点分别为A、B,从椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。(1) 求椭圆的离心率;(2) 设Q是椭圆上任意一点,、分别是左、右焦点,求的取值范围。思路解析:由与是共线向量可知ABOM,从而可得关于
14、的等量关系,从而求得离心率;若求的取值范围,即需求cos的范围,用余弦定理即可。解答:(1)设(-c,0),则(2)设|=,|=,=,+=2,|=2,注:熟练掌握椭圆定义及性质并且其解决相应问题,在求离心率时,除已知等式外,还需一个关于的等式,即可求得。(三)直线与椭圆的位置关系相关链接1直线与椭圆位置关系的判定把椭圆方程与直线方程y=kx+b联立消去y,整理成形如的形式,对此一元二次方程有:(1)0,直线与椭圆相交,有两个公共点;(2)=0,直线与椭圆相切,有一个公共点;(3)0,总有成立?若存在,求出所有k的值;(2)若,求实数k的取值范围。思路解析:第(1)问为存在性问题,可先假设存在,
15、然后由可知M点为ON中点,用坐标表示相关量可求。第(2)问用坐标表示向量数量积,列式求解即可。解答:椭圆C:,直线AB的方程为:y=k(x-m).由消去y得设,则则若存在k,使总成立,M为线段AB的中点,M为ON的中点,即N点的坐标为。由N点在椭圆上,则即即故存在k=1,使对任意m0,总有成立。(2) 由即注:探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求学生自己观察、分析、创造性地运用所学知识和方法解决问题,它能很好地考查数学思维能力以及科学的探索精神。因此越来越受到高考命题者的青睐。(1)本题第(1)问是
16、一是否存在性问题,实质上是探索结论的开放性问题。相对于其他的开放性问题来说,由于这类问题的结论较少(只有存在、不存在两个结论有时候需讨论),因此,思考途径较为单一,难度易于控制,受到各类考试命题者的青睐。解答这一类问题,往往从承认结论、变结论为条件出发,然后通过特例归纳,或由演绎推理证明其合理性。探索过程要充分挖掘已知条件,注意条件的完备性,不要忽略任何可能的因素。(2)第(2)问是参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力。在历年高考中占有较稳定的比重。三、双曲线(一)双曲线的定义与标准方程相关链接1在运用双曲线的定义时,应特别注意定义中的条件“差的
17、绝对值”,弄清是指整条双曲线,还是双曲线的哪一支。2求双曲线标准方程的方法(1)定义法,根据题目的条件,若满足定义,求出相应即可求得方程;(2)待定系数法,其步骤是定位:确定双曲线的焦点在哪个坐标轴上;设方程:根据焦点的位置设出相应的双曲线方程;定值:根据题目条件确定相关的系数。注:若不能明确双曲线的焦点在哪条坐标轴上,可设双曲线方程为:。例题解析例已知动圆M与圆外切,与圆内切,求动圆圆心M的轨迹方程。思路解析:利用两圆心、外切圆心距与两圆半径的关系找出M点满足的几何条件,结合双曲线定义求解。解答:设动圆M的半径为r则由已知。又(-4,0),(4,0),|=8,0,焦点在x轴上;若0等),通过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 高考 数学 一轮 复习 8.3 圆锥曲线 精品 导学案 doc

限制150内