2019-2020学年九年级数学上册22二次函数复习教案新版新人教版-.doc
《2019-2020学年九年级数学上册22二次函数复习教案新版新人教版-.doc》由会员分享,可在线阅读,更多相关《2019-2020学年九年级数学上册22二次函数复习教案新版新人教版-.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年九年级数学上册22二次函数复习教案新版新人教版 一、复习目标1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数yax2(a0)的图象得到二次函数ya(axm)2k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。6.二次函数的综合应用二、课时安排2三、复习重难点把握二次函数的性质,利用二次函数的图象,
2、了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,并能和其它知识点进行综合应用。四、教学过程(一)知识梳理二次函数知识点:1. 二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。2. 二次函数的基本形式(1)二次函数基本形式:的性质: 的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值2. 的性质:的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小
3、;时,随的增大而增大;时,有最大值3. 的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值4. 的性质: 的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值3.二次函数图象的平移1. 平移步骤:(1) 将抛物线解析式转化成顶点式,确定其顶点坐标;(2)保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:(3) 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移
4、”概括成八个字“左加右减,上加下减”4.二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.5.二次函数的性质(1) 当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值 (2) 当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的增大而增大;当时,随的增大而减小;当时,有
5、最大值6.二次函数解析式的表示方法(1) 一般式:(,为常数,);(2) 顶点式:(,为常数,);(3)两根式:(,是抛物线与轴两交点的横坐标).7.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数: 当时,图象与轴交于两点,其中的是一元二次方程的两根这两点间的距离. 当时,图象与轴只有一个交点; 当时,图象与轴没有交点. 7.二次函数的应用:(二)题型、方法归纳类型一: 二次函数的平移 【主题训练1】(枣庄中考)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为(
6、)A.y=3(x+2)2+3B.y=3(x-2)2+3C.y=3(x+2)2-3D.y=3(x-2)2-3 【自主解答】选A.由“上加下减”的平移规律可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的平移规律可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.归纳:二次函数平移的两种方法1.确定顶点坐标平移:根据两抛物线前后顶点坐标的位置确定平移的方向与距离.2.利用规律平移:y=a(x+h)2+k是由y=ax2经过适当的平移得到的,其平移规律是“h左加右减,k上加下减”.即自变量加减左右移,函数值加减上下移.类
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 九年级 数学 上册 22 二次 函数 复习 教案 新版 新人 doc
限制150内