2019-2020学年高考数学一轮复习-函数-第4课时--函数的奇偶性教学案.doc
《2019-2020学年高考数学一轮复习-函数-第4课时--函数的奇偶性教学案.doc》由会员分享,可在线阅读,更多相关《2019-2020学年高考数学一轮复习-函数-第4课时--函数的奇偶性教学案.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年高考数学一轮复习 函数 第4课时 函数的奇偶性教学案 定义:如果对于函数f (x)定义域内的任意x都有 ,则称f (x)为奇函数;若 ,则称f (x)为偶函数. 如果函数f (x)不具有上述性质,则f (x)不具有 . 如果函数同时具有上述两条性质,则f (x) . 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称.2) 函数f(x)具有奇偶性的必要条件是其定义域关于 对称.2与函数周期有关的结论:已知条件中如果出现、或(、均为非零常数,),都可以得出的周期为 ;的图象关于点中心对称或的图象关于
2、直线轴对称,均可以得到周期 典型例题例1. 判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=log2(x+) (xR);(3)f(x)=lg|x-2|.解:(1)x2-10且1-x20,x=1,即f(x)的定义域是-1,1.f(1)=0,f(-1)=0,f(1)=f(-1),f(-1)=-f(1),故f(x)既是奇函数又是偶函数.(2)方法一 易知f(x)的定义域为R,又f(-x)=log2-x+=log2=-log2(x+)=-f(x),f(x)是奇函数.方法二 易知f(x)的定义域为R,又f(-x)+f(x)=log2-x+log2(x+)=log21=0,即f(-x)=-f(x)
3、,f(x)为奇函数.(3)由|x-2|0,得x2.f(x)的定义域x|x2关于原点不对称,故f(x)为非奇非偶函数.变式训练1:判断下列各函数的奇偶性:(1)f(x)=(x-2);(2)f(x)=;(3)f(x)=解:(1)由0,得定义域为-2,2),关于原点不对称,故f(x)为非奇非偶函数.(2)由得定义域为(-1,0)(0,1).这时f(x)=.f(-x)=-f(x)为偶函数.(3)x-1时,f(x)=x+2,-x1,f(-x)=-(-x)+2=x+2=f(x).x1时,f(x)=-x+2,-x-1,f(-x)=x+2=f(x).-1x1时,f(x)=0,-1-x1,f(-x)=0=f(x
4、).对定义域内的每个x都有f(-x)=f(x).因此f(x)是偶函数.例2 已知函数f (x),当x,yR时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果xR+,f(x)0,并且f(1)=-,试求f(x)在区间-2,6上的最值.(1)证明: 函数定义域为R,其定义域关于原点对称.f(x+y)=f(x)+f(y),令y=-x,f(0)=f(x)+f(-x).令x=y=0,f(0)=f(0)+f(0),得f(0)=0.f(x)+f(-x)=0,得f(-x)=-f(x),f(x)为奇函数.(2)解:方法一 设x,yR+,f(x+y)=f(x)+f(y),f(x+y)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 高考 数学 一轮 复习 函数 课时 奇偶性 教学 doc
限制150内