2019-2020学年九年级数学下册28.2解直角三角形及其应用教案2(新人教版).doc
《2019-2020学年九年级数学下册28.2解直角三角形及其应用教案2(新人教版).doc》由会员分享,可在线阅读,更多相关《2019-2020学年九年级数学下册28.2解直角三角形及其应用教案2(新人教版).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年九年级数学下册28.2解直角三角形及其应用教案2(新人教版)【探究目标】1目的与要求 能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题2知识与技能 能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的知识解决有关的实际问题3情感、态度与价值观 通过解直角三角形的应用,培养学生学数学、用数学的意识和能力,激励学生多接触社会、了解生活并熟悉一些生产和生活中的实际事物【探究指导】教学宫殿在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如下图:角角关系:两锐角互余,即A
2、+B90;边边关系:勾股定理,即;边角关系:锐角三角函数,即解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角)这两种情形的共同之处:有一条边因此,直角三角形可解的条件是:至少已知一条边用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题当需要
3、求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解在解直角三角形的过程中,常会遇到近似计算,如没有特殊要求外,边长保留四个有效数字,角度精确到1例1 在ABC中,C90,根据下列条件解直角三角形(1)c10,B45,求a,b,A;(2),求c,A,B思路与技巧 求解直角三角形的方法多种多样,如(1)可以先求a或b,也可以先求A,依据都是直角三角形中的各元素间的关系,但求解时为了使计算简便、准确,一般尽量选择正、余弦,尽量使用乘法,尽量选用含有已知量的关系式,尽量避免使用中间数据解答 (1)A90-4545(2)所以例2 如图,CD是RtABC斜边上的高,,求AC,AB,A
4、,B(精确到1)思路与技巧 在RtABC中,仅已知一条直角边BC的长,不能直接求解注意到BC和CD在同一个RtBCD中,因此可先解这个直角三角形 解答 在RtBCD中用计算器求得 B5444于是A90-B3516在RtABC中,例3 气象台测得台风中心在某港口A的正东方向400km处,正在向正西北方向转移,距台风中心300km的范围内将受其影响,问港口A是否会受到这次台风的影响?思路与技巧 如图1948,就是要求出A到台风移动路线BC的距离是否大于300km,RtABC中,ACB90,ABC45,AB400km,是AC可求解答 在RtABC中,由于所以ACABsinABC400sin45所以港
5、口A将受到这次台风的影响例4 如图,两幢建筑物的水平距离为565m,从较高的建筑物的顶部看较低的建筑物的底部的俯角是42,从较低的建筑物的顶部看较高建筑物顶部的仰角是22,求这两幢建筑物的高度(精确到01m)思路与技巧 如图,AB、CD表示两幢建筑物,ABBD,CDBD,BD565m,根据俯角、仰角的意义,DAE42,ACF22,于是RtABD、RtACF都可解解答 在RtABD中,ADBDAE42BD56.5(m)ABBDtanADB56.5tan4250.9(m)在RtACF中,AFCFtanACF=56.5tan2222.8(m)所以CDAB-AF28.1(m)答:两幢建筑物的高度分别为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 九年级 数学 下册 28.2 直角三角形 及其 应用 教案 新人 doc
限制150内