2019-2020学年高中数学下学期-2.3.4平面向量共线的坐标表示教案-新人教A版必修4.doc
《2019-2020学年高中数学下学期-2.3.4平面向量共线的坐标表示教案-新人教A版必修4.doc》由会员分享,可在线阅读,更多相关《2019-2020学年高中数学下学期-2.3.4平面向量共线的坐标表示教案-新人教A版必修4.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年高中数学下学期 2.3.4平面向量共线的坐标表示教案 新人教A版必修4【教学目标】1会推导并熟记两向量共线时坐标表示的充要条件;2能利用两向量共线的坐标表示解决有关综合问题。3通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力.【教学重难点】教学重点:向量共线的坐标表示及直线上点的坐标的求解教学难点:定比分点的理解和应用【教学过程】一、创设情境前面,我们学习了平面向量可以用坐标来表示,并且向量之间可以进行坐标运算。这就为解决问题提供了方便。我们又知道共线向量的条件是当且仅当有一个实数使得=,那么这个条件是否也能用坐标来表示呢?因此,我们有必要探
2、究一下这个问题:两向量共线的坐标表示。二、新知探究思考:共线向量的条件是当且仅当有一个实数使得=,那么这个条件是否也能用坐标来表示呢?设=(x1, y1) =(x2, y2)( ) 其中由= , (x1, y1) =(x2, y2) 消去:x1y2x2y1=0结论: ()x1y2-x2y1=0注意:1消去时不能两式相除,y1, y2有可能为0, ,x2, y2中至少有一个不为0.2充要条件不能写成 x1, x2有可能为0.3从而向量共线的充要条件有两种形式: ()三、典型例题例1. 已知,且,求解:,点评:利用平面向量共线的充要条件直接求解.变式训练1:已知平面向量 , ,且,则等于_.例2:
3、 已知,求证:、三点共线证明:,又,.直线、直线有公共点,三点共线。 点评:若从同一点出发的两个向量共线,则这两个向量的三个顶点共线.变式训练2:若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为_.例3:设点P是线段P1P2上的一点, P1、P2的坐标分别是(x1,y1),(x2,y2).(1) 当点P是线段P1P2的中点时,求点P的坐标; (2) 当点P是线段P1P2的一个三等分点时,求点P的坐标.解:(1)所以,点P的坐标为(2)当时,可求得:点的坐标为:当时,可求得:点的坐标为:点评:此题实际上给出了线段的中点坐标公式和线段三等分点坐标公式.变式训练3:当时,点P的坐标是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 高中数学 下学 2.3 平面 向量 共线 坐标 表示 教案 新人 必修 doc
链接地址:https://www.taowenge.com/p-13085480.html
限制150内