2019-2020学年九年级数学上册-22.2.1-相似三角形的判定教案-沪科版.doc
《2019-2020学年九年级数学上册-22.2.1-相似三角形的判定教案-沪科版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年九年级数学上册-22.2.1-相似三角形的判定教案-沪科版.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年九年级数学上册 22.2.1 相似三角形的判定教案 沪科版授课目的与考点分析:相似三角形的判定二、授课内容:(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形强调:当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;相似三角形的特征:形状一样,但大小不一定相等;相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例2、相似三角形对应边的比叫做相似比强调:全等三角形一定是相似三角形,其相似比k=1所以全等三角形是相似三角形的特例其区
2、别在于全等要求对应边相等,而相似要求对应边成比例相似比具有顺序性例如ABCABC的对应边的比,即相似比为k,则ABCABC的相似比,当它们全等时,才有k=k=1相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似强调:定理的基本图形有三种情况,如图其符号语言:DEBC,ABCADE;(双A型)这个定理是用相似三角形定义推导出来的三角形相似的判定定理
3、它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。例1、已知:如图,1=2=3,求证:ABCADEABCDEF第4题例2、如图,E、F分别是ABC的边BC上的点,DEAB,DFAC ,求证:ABCDEF. 判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。简单说成:两
4、边对应成比例且夹角相等,两三角形相似例1、ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?说说你的理由例2、如图,点C、D在线段AB上,PCD是等边三角形。(1)当AC、CD、DB满足怎样的关系时,ACPPDB?(2)当ACPPDB时,求APB的度数。判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。简单说成:三边对应成比例,两三角形相似强调:有平行线时,用预备定理;已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角相等必须是成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 九年级 数学 上册 22.2 相似 三角形 判定 教案 沪科版 doc
限制150内