21-2.高中数学选修2-1知识总结--圆锥曲线与方程.doc
《21-2.高中数学选修2-1知识总结--圆锥曲线与方程.doc》由会员分享,可在线阅读,更多相关《21-2.高中数学选修2-1知识总结--圆锥曲线与方程.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、21-2.高中数学选修2-1知识总结-圆锥曲线与方程21-2.高中数学选修2-1知识总结-圆锥曲线与方程高中数学选修2-1知识点总结第二章圆锥曲线与方程装第二章圆锥曲线与方程本章知识结构:圆锥曲线的实际背景本章知识要点:标准方程简单的几何性质椭圆双曲线抛物线简单应用订2.1曲线与方程一、曲线与方程一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)0的实数解建立如下的关系:(1)曲线上的点的坐标都是方程的解;(2)以方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这个曲线叫做方程的曲线.二、求曲线的方程1.解析几何:用坐标
2、法研究几何图形的知识形成的学科叫做解析几何.解析几何研究的主要问题是:(1)根据已知条件,求出表示曲线的方程;(2)通过曲线的方程,研究曲线的性质.2.求曲线方程的步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合PMp(M);(3)用坐标表示条件p(M),列出方程f(x,y)0;第1页共6页线盘点知识夯实基础逐步提高(4)化方程f(x,y)0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.简言之:建系、取点列式代换化简证明.2.2椭圆一、椭圆的定义:平面内与两个定点F1、F2的距离的和等于常数2a(其中2aF1F2)
3、的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.椭圆的定义可用集合语言表示为:PMMF1MF22a,2aF1F2.注意:当2aF1F2;当2aF1F2时,表示线段F1F2时,轨迹不存在.二、椭圆的标准方程与几何性质:标准方程当椭圆焦点在x轴上时当椭圆焦点在y轴上时x2y221(ab0)2aby2x221(ab0)2ab图形范围对称轴对称中心axa,bybaya,bxbx轴、y轴坐标原点O(0,0)x轴、y轴坐标原点O(0,0)第2页共6页高中数学选修2-1知识点总结第二章圆锥曲线与方程装长轴短轴顶点坐标焦点坐标离心率长轴长2a,短轴长2b长轴长2a,短轴长2b(a,
4、0),(0,b)(c,0),其中c2a2b2ec(其中0e1)a(0,a),(b,0)(0,c),其中c2a2b2ec(其中0e1)a注意:1.a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a2b2c2.e叫做椭圆的离心率,e的扁平程度,e越大,椭圆越扁,e越小,椭圆越圆.c且0e1,e可以刻画椭圆a2.点P是椭圆上任一点,F是椭圆的一个焦点,则PFmaxac,PFminac.3.点P是椭圆上任一点,当点P在短轴端点位置时,F1PF2取最大值.4.椭圆的第二定义:当平面内点M到一个定点F(c,0)(c0)的距离和它到一条定直线订线ca2l:x的距离的
5、比是常数e(0e1)时,这个点的轨迹是椭圆,定点是椭圆的ac焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率.x2y25.椭圆方程221(ab0)常用三角换元为xacos,ybsin.ab三、点与椭圆位置关系x2y2点P(x0,y0)与椭圆221(ab0)位置关系:abx02y02(1)点P(x0,y0)在椭圆内221(含焦点)ab(2)点P(x0,y0)在椭圆上x0y012222abx02y02(3)点P(x0,y0)在椭圆外221ab第3页共6页盘点知识夯实基础逐步提高四、直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法位置关系相交相切相离(2)弦长公式:设直线ykxb交椭圆于P1(
6、x1,y1),P2(x2,y2)2x1x2,或|PP则|PP12|1k12|1公共点有两个公共点有且只有一个公共点无公共点判定方法000直线与椭圆方程首先应消去一个未知数得一元二次方程的根的判别式1y1y2(k0).k22.3双曲线一、双曲线的定义平面内与两个定点F1、F2的距离的差的绝对值等于常数2a(其中2aF1F2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.双曲线的定义可用集合语言表示为:PMMF1MF22a,2aF1F2.注意:当2aF1、F2为端点的两条射线;当2aF1F2时,表示分别以F1F2时,轨迹不存在.二、双曲线的标准方程与几何性质:标
7、准方程当双曲线焦点在x轴上时当双曲线焦点在y轴上时x2y221(a0,b0)2aby2x221(a0,b0)2ab图形第4页共6页高中数学选修2-1知识点总结第二章圆锥曲线与方程装范围对称轴对称中心实轴虚轴顶点坐标焦点坐标渐近线离心率xa,或xaya,或yax轴、y轴坐标原点O(0,0)实轴长2a,虚轴长2bx轴、y轴坐标原点O(0,0)实轴长2a,虚轴长2b(a,0)(c,0),其中c2a2b2xyb0,即yxabace(其中e1)a(0,a)(0,c),其中c2a2b2yxa0,即yxabbce(其中e1)a订注意:1.a、b、c、e的几何意义:a叫做半实轴长;b叫做半虚轴长;c叫做半焦距
8、;a、线b、c之间满足c2a2b2.e叫做椭圆的离心率,e张口就越大.c且e1.e越大,双曲线的a2.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e2.3.双曲线的第二定义:当平面内点M到一个定点F(c,0)(c0)的距离和它到一条定ca2直线l:x的距离的比是常数e(e1)时,这个点的轨迹是双曲线,定点是双ac曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率.4.直线与双曲线位置关系同椭圆.特别地,直线与双曲线有一个公共点,除相切外还有当直线与渐进线平行时,也是一个公共点.x2y25.共渐近线的双曲线可写成22(0);abx2y221(b2a2).共焦点的双曲线可写成2ab第5页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 21 高中数学 选修 知识 总结 圆锥曲线 方程
限制150内