2022年一元一次方程知识点和常考题型解析.pdf
《2022年一元一次方程知识点和常考题型解析.pdf》由会员分享,可在线阅读,更多相关《2022年一元一次方程知识点和常考题型解析.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元一次方程知识点和常考题型一 知识点复习巩固知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中 x 是未知数, a,b 是已知数,且 a0)。要点诠释:一元一次方程须满足下列三个条件:(1) 只含有一个未知数;(2) 未知数的次数是 1 次;(3) 整式方程注意:方程要化为最简形式,且一次项系数不能为零。2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质 1:等式两边加(或减)同一个数(或式子),结果仍相等。如果,那么;(c 为一个数或一个式子 )
2、 。等式的性质 2:等式两边乘同一个数,或除以同一个不为0 的数,结果仍相等。如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0 的数,分数的值不变。即:(其中 m 0)2、解一元一次方程的一般步骤:常用步骤具体做法依据注意事项去分母在 方 程 两 边 都 乘 以各 分 母 的 最 小 公 倍数等式基本性质 2 防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把 含 有 未 知 数 的 项都移到方程的一边,其 他 项 都 移 到 方 程的另一边 ( 记住移项等式基本性质 1 移项要变号,不移不变
3、号;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 11 页 - - - - - - - - - - 要变号 ) 合 并 同 类项把方程化成axb(a0)的形式合并同类项法则计算要仔细,不要出差错;系数化成 1 在 方 程 两 边 都 除 以未知数的系数a,得到方程的解 x等式基本性质 2 计算要仔细,分子分母勿颠倒要点诠释:理解方程 ax=b 在不同条件下解的各种情况,并能进行简单应用: a0 时,方程有唯一解;a=0,b=0时,方程有无数个解;a=0,b0 时,方程无解。知识点三:列一元一
4、次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。(2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,利用等量关系写出等式,即列方程。(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案,注意带上单位。2、常见的一些等量关系常见列方程解应用题的几种类型:知识点三:方程与整式、等式的区别(1)从概念来看:整式:单项式和多项式统称整式。等式:用等号来表示相等关系的式子叫做等式。如2+3=5,m nnm等都叫做等式,而像 3a+2b,
5、3 m2n 不含等号,所以它们不是等式,而是代数式。方程:含有未知数的等式叫做方程。 如 5x311。理解方程的概念必须明确两点:是等式;含有未知数。两者缺一不可。(2)从是否含有等号来看:方程首先是一个等式,它是用“”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。(3)从是否含有未知量来看:等式必含有“” ,但不一定含有未知量;方程既含有“”,又必须含有未知数。但整式必不含有等号,不一定含有未知量,分为单项式和多项式。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 11
6、 页 - - - - - - - - - - 二 常见应用题举例1、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度 时间时间路程 速度速度路程 时间2.行程问题基本类型(1)相遇问题:快行距慢行距原距(2)追及问题:快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用3.6 小时,已知步行速度为每小时8 千米,公交车的速度为每小时40 千米,设甲、乙两地相距x千米,则列方程为。解:等量关系步行时间乘公交车的时间3.6 小时列出方程是:6 .3408xx2、某人从家里骑自行车到学校。若每小时行15 千米,可比预定时间早到15 分钟;若每小时行9 千米,可比预定时间
7、晚到15 分钟;求从家里到学校的路程有多少千米?解:等量关系速度 15 千米行的总路程速度9 千米行的总路程速度 15 千米行的时间15 分钟速度9 千米行的时间15 分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。方法一:设预定时间为x小/时,则列出方程是:15(x0.25) 9(x0.25 )方法二:设从家里到学校有x千米,则列出方程是:60159601515xx3、一列客车车长200 米,一列货车车长280 米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16 秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且
8、以两车车长和为总路程的相遇问题。等量关系:快车行的路程慢车行的路程两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2x米/秒,则16 3x16 2x200 280 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26 秒。行人的速度为每秒多少米? 这列火车的车长是多少米?提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳
9、 - - - - - - - - - -第 3 页,共 11 页 - - - - - - - - - - 等量关系: 两种情形下火车的速度相等 两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。解:行人的速度是:3.6km/ 时 3600 米 3600 秒 1 米/秒骑自行车的人的速度是:10.8km/ 时10800 米 3600 秒 3 米 /秒 方法一:设火车的速度是x 米/秒,则26 (x3) 22 (x 1) 解得x4 方法二:设火车的车长是x 米,则2632622122xx6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发
10、。汽车速度是60 千米/ 时,步行的速度是5 千米 / 时,步行者比汽车提前1 小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60 千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)提醒:此类题相当于环形跑道问题,两者行的总路程为一圈即 步行者行的总路程汽车行的总路程60 2 解:设步行者在出发后经过x 小时与回头接他们的汽车相遇,则5x60(x1)60 2 7、某人计划骑车以每小时12 千米的速度由A地到 B 地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20 分,便只好以每小时15 千米的速度前进,结果比规定
11、时间早4 分钟到达 B地,求 A、B两地间的距离。解:方法一:设由A 地到 B 地规定的时间是x 小时,则12x604602015xx2 12 x12 224(千米 ) 方法二:设由A、B 两地的距离是x 千米,则(设路程,列时间等式)60460201512xxx24 答: A、B 两地的距离是24 千米。温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。8、一列火车匀速行驶,经过一条长300m的隧道需要20s 的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。解析:只要
12、将车尾看作一个行人去分析即可,前者为此人通过300 米的隧道再加上一个车长,后者仅为此人通过一个车长。此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 11 页 - - - - - - - - - - 解:方法一:设这列火车的长度是x米,根据题意,得1020300 xxx 300 答:这列火车长300 米。方法二:设这列火车的速度是x 米/秒,根据题意,得20 x30010 xx30 10 x300 答:这列火车长300 米。9、
13、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15 小时,开通高速铁路后,车速平均每 小时比原来加快了60 千米,因此从甲 地到乙 地只需要10 小时即可到达,列方程得。答案:601510 xx10、两列火车分别行驶在平行的轨道上,其中快车车长为100 米,慢车车长150 米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5 秒。 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少? 如果两车同向而行,慢车速度为8 米/ 秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?解析:快车驶过慢车某个窗口时:研究的
14、是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快车车长! 慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为慢车车长! 快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为两车车长之和!解:两车的速度之和100 5 20(米 /秒)慢车经过快车某一窗口所用的时间150 20 7.5(秒) 设至少是x秒, (快车车速为208)则(208)x8x100 150 x62.5 答:至少 62.5 秒快车从后面追赶上并全部超过慢车。11、甲、乙两人同时从A地前往相距25.5 千米的 B地,甲骑自行车,乙步行,甲的速度比
15、乙的速度的 2 倍还快 2 千米 /时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了 3 小时。求两人的速度。解:设乙的速度是x 千米 /时,则精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 11 页 - - - - - - - - - - 3x3 (2x2)25.5 2 x5 2x2 12 答:甲、乙的速度分别是12 千米 /时、5 千米 /时。二、环行跑道与时钟问题:1、在 6 点和 7 点之间,什么时刻时钟的分针和时针重合?老师解析: 6:00 时分针指向12,时
16、针指向6,此时二针相差180,在 6:007:00 之间,经过x分钟当二针重合时,时针走了0.5x分针走了 6x以下按追击问题可列出方程,不难求解。解:设经过x分钟二针重合,则6x180 0.5x 解得11360 x118322、甲、乙两人在400 米长的环形跑道上跑步,甲分钟跑240 米,乙每分钟跑200 米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?老师提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。解:设同时同地同向出发x分钟后二人相遇,则240 x 200 x400 x10 设背向跑,x分钟后相遇,则240 x200 x400 x1113、在 3 时和 4
17、时之间的哪个时刻,时钟的时针与分针:重合;成平角;成直角;解:设分针指向3 时 x 分时两针重合。xx1213511180 x11416答:在 3 时11416分时两针重合。 设分针指向3 时 x 分时两针成平角。26012135xx11149x答:在 3 时11149分时两针成平角。设分针指向3 时 x 分时两针成直角。46012135xx11832x答:在 3 时11832分时两针成直角。4、某钟表每小时比标准时间慢3 分钟。若在清晨6 时 30 分与准确时间对准,则当天中午该钟表指示时间为12 时 50 分时,准确时间是多少?解:方法一:设准确时间经过x分钟,则x 38060 (60 3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 一元一次方程 知识点 题型 解析
限制150内